
1

Evolutionary generation of game levels

A.M. Connor*, T.J. Greig and J. Kruse

Auckland University of Technology, Auckland, New Zealand.

Abstract

This paper outlines an approach for evolutionary procedural generation of video game content. The study deals with the

automatic generation of game level designs using genetic algorithms and the development of a fitness function that

describes the playability of the game level. The research explores whether genetic algorithms have the ability to produce

outcomes that demonstrate characteristics that arise through human creativity, and whether these automated approaches

offer any benefits in terms of time and effort involved in the design process. The approach is compared to a random

method and the results show that the genetic algorithm is more consistent in finding levels; however analysis of the game

levels indicates that the fitness function is not fully capturing level playability. The ability to produce playable levels

decreases as the play area increases, however there is potential to produce larger maps that are both playable and arguably

creative through a recombination method.

Keywords: Procedural Content Generation, Creative Computing, Novelty Generation, Video Game Design, Genetic Algorithms,

Computational Creativity.

Received on 07 November 2017, accepted on 30 March 2018, published on 10 April 2018

Copyright © 2018 A.M. Connor et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.10-4-2018.155857

*Corresponding author. Email:andrew.connor@aut.ac.nz

1. Introduction

Game content is an important factor in keeping players

engaged in gaming worlds, yet games are becoming

increasingly complex which has a corresponding impact on

game development [1]. As well as dealing with this

complexity in terms of the underlying code, there is an

increasing demand for new game content. In general, game

content and game asset creation are some of the most

significant costs of a game development [2]. Manual content

production is therefore expensive and potentially not

scalable [3]. In contrast to manual content production,

Procedural Content Generation is the application of

computers to generate game content, specifically in terms of

algorithmic generation of game content with limited or no

human contribution [4]. However, PCG is considered

difficult as it not only incurs considerable computational

overhead, but also requires the ability to compute the

technical and cultural values of the generated instances [5].

There are also open questions as to whether PCG can

produce novelty in terms of content that could be

comparable to the outcomes of human creativity.

The research in this paper outlines a comparative study to

determine the implications of developing game content

using evolutionary computation as an approach. In

particular, the study compares the use of a genetic algorithm

based approach to the design of game levels with more

randomised content generation. This research is an initial

study that attempts to compare the outcomes of the two

approaches to determine whether the game levels produced

by the genetic algorithm have any novel characteristics that

are not found in the randomly generated levels.

The remainder of this paper is structured as follows.

Section 2 outlines the background to this research and

discusses related work. Section 3 describes the both genetic

algorithm used to evolve the game levels in this study.

Section 4 outlines the evaluation approach for different

sized game levels that allows the scalability of the

approaches to be inferred. Section 5 discusses the results

and presents directions for future work, whilst Section 6

concludes the paper.

Research Article
EAI Endorsed Transactions
on Creative Technologies

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

A. M. Connor, T. J. Greig and J. Kruse

2

2. Background and Related Work

The creation of game content, such as models, levels,

textures, and other items within the game world, is time-

consuming and expensive [6]. In addition, it has been noted

that the manual creation of game content has a range of

other drawbacks that include a lack of flexibility and

suggestions that manual approaches are inherently

unscalable [7]. The automatic creation of game content is

not new, with examples dating back to the 1980s [4],

however there are continuing challenges in finding ways to

reduce unwanted artefacts that can be encountered using

simple random generation of content.

Procedural Content Generation (PCG) is therefore an area

of study that looks at the automated generating of useful

content for games. It has been argued that games are the

“killer app” for the study of computational creativity but

games can also be considered in much the same light from a

creative computing context.

2.1. Creative Computing and Computational
Creativity

The terms “Creative Computing” and “Computational

Creativity” are a simple juxtaposition of two words, but a

simple swap that produces a significant change in meaning.

HUGILL and YANG [8] suggest that “the former is about

doing computations in a creative way, while the latter is

about achieving creativity through computation”. YANG

and ZHANG [9] continue this argument by stating that “the

difference can be that Creative Computing requires

computing to be creative. However, computational creativity

is to generate machine creativity through simulating human

creativity, which does not necessarily require computing

itself to be creative”.

Computational Creativity is the therefore the art, science,

philosophy and engineering of computational systems that

exhibit behaviours that unbiased observers would deem to

be creative. It has been observed that “from a CC

perspective, procedural content generation (PCG) in games

has been viewed — like mathematics and engineering — as

a potentially creative activity but only if done exceptionally

well.” [10]. These authors also suggest that “computational

game creativity as the study of computational creativity

within and for computer games. Games can be (1) improved

as products via computational creations (for) and/or (2) used

as the ultimate canvas for the study of computational

creativity as a process (within)” [10]. However, whilst

coherent in its own definition, this perspective does not

address the need for creative approaches to developing

games or the development of tools to support and

understand human creativity.

Autonomous creative systems have a long history in the

game industry with many examples readily cited in the

literature [5] along with many commercial games having

been created using such approaches, with very successful

titles such as Diablo III and Skyrim being just two examples.

With a growing demand for engaging but unpredictable

game experiences, such autonomous creative systems are

increasingly becoming a necessity for the games industry.

This necessity therefore requires that the approaches to

game design itself are explored creatively as well as being a

process that produces creative outcomes. LIU [11] identifies

some of the challenges around creative exploration of

process and the need for appropriate tools to support those

process in a definition of creative computing: “Creative

computing aims to better understand human creativity and

to formulate an algorithmic perspective on creative

behaviour in human; and to design programs that can

enhance human creativity without necessarily being

creative themselves”.

With this in mind, the automated generation of game

content can therefore be viewed simultaneously using both

computational creativity and creative computing as lenses to

analyse and reflect on the outcomes of the work. In the

context of exploring new tools to support the creative

process, there has been a growing emphasis on the use of

computational intelligence techniques such as evolutionary

computation. Whilst such techniques are arguably not

creative, they however offer the potential to enhance human

creativity as well as the ability to produce a surprising result.

Such surprise has been identified as an essential aspect of

creativity [12] and therefore the use of such approaches may

be helpful in producing an output with creative elements.

The following sections provide an overview of both

Procedural Content Generation (PCG) in general, as well as

specific examples of evolutionary approaches to PCG.

2.2. Procedural Content Generation

This section introduces existing work in the area of

Procedural Content Generation. It is not an exhaustive

review, as such surveys are already published in the

literature [5]. Instead, this section introduces PCG for later

considering evolutionary approaches to PCG. PCG can be

used for a variety of reasons, including providing variety,

reducing development time and development costs, saving

space in transmission or on disk, augmenting human

creativity and enabling adaptivity in games [4].

Togelius, Kastbjerg and Schedl [13] attempt to classify

PCG through a process of defining what it is not. Implicit in

this work is the distinction between online PCG and offline

PCG, the former being where content is generated at

runtime during gameplay and the latter being where content

is generated during the design of the game or prior to

gameplay [14]. Online PCG is both challenging and

fascinating with the potential to impact factors such as the

replayability of games as well as promoting the emergence

of new game dynamics [15], however work outlined in this

paper specifically address offline PCG.

Offline PCG facilitate the game development process and

typically involves systems that assist game developers in

their design process [16, 17] or through the creation of game

assets [18] or levels [19-21]. Traditional approaches to PCG

utilise a number of techniques or theoretical frameworks,

such as L-systems [22] or other space based approaches

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

3

[23], statecharts [24] and petri nets [25], along with an

emergence of declarative approaches [26] or those using

techniques such as answer set programming [27].

Despite these different approaches to PCG, it has been

observed that “generated content generally looks

generic” [4], and there is an obvious challenge in using

PCG to generate content that would exhibit the same

novelty characteristics as arise from human creativity.

One of the dominant trends in recent years is the

growing interest in search based or evolutionary based

approaches to PCG. Evolutionary algorithms have

been used as novelty generators in other domains

[28-30], indeed with some authors going as far as to

suggest that evolutionary algorithms are better

considered as continuous novelty generators as

opposed to optimisers [31] and that the dominant

theme of evolutionary computation is novelty

generation [32].

2.3. Evolutionary PCG

Evolutionary Procedural Content Generation (EvoPCG) is a

specific case of search based PCG where the search

algorithm utilises an evolutionary base. In general, search

based PCG [33] provides the opportunity to explore massive

search spaces and find unique solutions that may not be

generatable using more traditional approaches. The

identification of “unexpected” solutions using search

algorithms has been seen in a variety of domains, such as

software engineering [34], engineering design [35, 36] and

robot morphology [37] to name but a few explicitly. Many

examples of such novelty generation or unexpected

solutions can be found in the literature [38-41]. The

application of evolutionary algorithms offer the same

potential in terms of the possibility to identify surprising and

novel solutions in the creation of game content.

Whilst the term search based PCG was only recently

utilised [42], the use of evolutionary algorithms has been

relatively extensive prior to this. As with PCG in general,

surveys of existing search based approaches to PCG exist in

the literature [33, 43] and this review does not attempt to

replicate this work and instead focuses specifically on the

use of genetic algorithms in the generation of game maps.

One of the challenges of the use of genetic algorithms in

game level design is the complexity of formulating a fitness

function that captures the intent of a game designer. It is

perhaps this challenge that has limited the uptake of

automated evolutionary approaches to procedural content

generation. Whilst not specific to game level design, the

challenge of capturing vague performance measures has

been identified in other applications of evolutionary

computation [44]. It is the formulation of the fitness

function that ultimately determines the extent to which a

genetic algorithm can explore beyond the expected. To

circumnavigate this challenge, many applications focus on

the use of interactive evolutionary computation where the

designer evaluates the levels in place of a fitness function.

Examples of such approaches have been applied to city

layouts [45], racing car track levels [46], terrain generation

[47] and game levels [48] to name but a few. Whilst these

approaches are interesting in terms of computationally

augmenting human creativity, they still suffer from being a

manually intensive process. A more useful approach would

then be the use of a fully automated approach.

Various studies have addressed the evolutionary

generation of game levels, for example Ashlock, Lee and

McGuinness [49] apply both cellular automata and genetic

algorithms to the process of creating game level maps.

Similarly, Hartsook, Zook, Das and Riedl [50] use a genetic

algorithm to create 2D role playing game worlds. Whilst

some studies can be found in the literature, the use of

genetic algorithms in the creation of game levels is still an

underexplored area. Perhaps the most relevant study to date

is the work of Sorenson and Pasquier [51] who create a

generic fitness function for the “fun” developed in playing a

given level of a game to guide the generation process. In this

particular work, the mechanics of the game creation process

are modelled as constraints rather than embedded in the

fitness function. For example, a game level that is not

traversable is considered as violating a constraint which

arguably could mean that valuable game level features are

quickly lost from the genetic mating pool.

Common to all approaches identified in the literature are

challenges related to the game level representation and the

formulation of the fitness function. Opportunities exist to

further explore the potential for applying genetic algorithms

or other metaheuristic search algorithms to the game level

design process to better explore how to represent levels and

formulate fitness functions in order to address the challenge

of creating original content [52].

3. Evolutionary Game Level Creation

This research sets out to consider whether the use of

evolutionary algorithms provides any quantifiable benefit

when used in the game design process to procedurally

generate game levels. To that end, a Genetic Algorithm has

been utilised to automatically design game levels for a

simple top down shooter game. The outcome of evolving

such levels is compared to randomly generated levels in the

first instance. Initially, the Genetic Algorithm approach also

involve the random generation of a population of levels and

for consistency the same approach to generate levels is

utilised as with the random generation baseline.

3.1. Game Level Representation

The game used to evaluate the approach is a top down

shooter game where the player controls a character who

explores the level, finds keys to open doors and confronts

enemies that can be attacked using a variety of weapons. A

generic level therefore consists of an m x n grid of cells and

for the purpose of the level design it is assumed that the start

of each level is always the bottom left cell and the exit is the

top right cell. Whilst somewhat artificial, the prescription of

entrance and exit cells has been used in similar studies [49].

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

A. M. Connor, T. J. Greig and J. Kruse

4

Within the level, cells can either be walls or vacant

spaces that combine to give rooms and corridors. A typical

level is shown in Figure 1 where the dark spaces are the

walls and the white the contiguous space of passageways

and rooms.

Figure 1. Typical game level

Initial experimentation on level generation showed that

generating initial levels using a cell based representation,

where each cell was initialised independently as a wall or

void resulted in noisy and incoherent levels. Such an

implementation based on individual cells is the obvious

approach, however the outcomes drove the development of

the final representation into more creative directions. The

adoption of an evolutionary algorithm was itself a trigger to

human creativity to identify potential representations that

might not otherwise have been considered. The final

generative strategy used is dubbed “falling rectangles”. It is

analogous to simply throwing some rectangular shapes into

a space and using where they fall as the level map.

To implement this in practice, a number of assumptions

were made and control parameters assigned. The main

assumption is that a “good” level will have a coverage of

about 70% of the available space as playable space that is

reachable from the start point. This goal is defined as the

desired space ratio, R. Whilst this is given an arbitrary value,

this is not a real limitation of the current work as the

intention is to compare the ability of different methods to

reach the goal and not to validate the goal in its own right.

This approach for generating levels has been fully described

in other work [53] but the essence of the approach is the

determination of the number of randomly placed rectangles

that will likely result in the desired space ratio, R. The

following equation is used to calculate the number of

rectangles used ():

(1)

In this equation, is the total number of cells in the

level determined by the width and height and O is the

overlap factor, which is a simple adjustment that takes into

account potentially overlapping tiles. Finally, is the

projected average area of rectangles measured in cells that is

determined from the upper and lower bounds on the sizes of

the generated rectangles.

Upon generation of a level, the state of each individual

cell is determined to be either a wall or a void, and all future

operations are conducted by manipulating cells. For the

Genetic Algorithm the initial population of individuals was

created by repeating this approach to generating an

individual level until the initial population was complete.

3.2. Genetic Algorithm Implementation

Genetic Algorithms [54] are a search and optimisation

approach that are based on the principles of natural selection

and population genetics. Genetic Algorithms (GAs) have

been widely used in science, engineering and other domains

as an adaptive algorithm for solving practical problems and

to computationally explore solution spaces. They have been

successfully applied to problems as diverse as equipment

selection [55], machine design [56], service composition

[57] and layout design [58] to name but a few. In general,

GAs are considered a robust global optimisation algorithm.

The basic operation of GAs is well documented in the

existing literature [59, 60], consistently essentially of a

population of individuals with in which breeding takes place

to produce a new generation. During the breeding process,

individuals are selected to mate based on their fitness (or

quality score) with the more fit individuals likely to be

selected. This results in the transfer of strong characteristics

from generation to generation, which is the essence of

survival of the fittest. Two individuals create two children in

the next generation through the application of the crossover

(or recombination) and mutation operators.

The final elements for a GA to be implemented are the

creation of a fitness function that differentiates between

individuals and also a specific encoding of an individual in

such a way that it allows the GA to evolve better individuals

over time. The specific characteristics of the GA

implemented in this research are discussed in the following

sections.

Chromosome Encoding
Traditionally, GAs have used a binary encoding where

either real or symbolic parameters are represented by

mapping to one or more bits in a binary string. In this

research, the two dimensional game level map is transferred

into a one dimensional binary array, where each bit

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

5

corresponds to one cell in the level map with a value of 1

indicating that the cell is currently a wall, and a 0 indicating

that the cell is currently a void. A simple 4x4 grid is shown

in Figure 2 along with the chromosome encoding.

0 0 0 1 0 1 0 1 0 0 00 0 11 0

(0,0)

(0,3) (3,3)

(3,0)

.

Figure 2. Chromosome encoding for a 4x4 grid

Selection
The GA implemented in this research uses a roulette wheel

selection method, which is one of the most common

selection approaches. In roulette wheel selection, the

population of individuals is ranked according to the fitness

value. A cumulative probability of selection is awarded

based on the contribution of the fitness of each individual to

the total fitness of the generation. Two individuals are

selected for breeding based on a randomly generated number

that is compared to the probability of selection.

Crossover
The crossover implementation used in this research is a

simple single point crossover. A crossover point is chosen at

random using a probability test for each cell against a fixed

value. When a crossover point is chosen, the two parents are

recombined to produce two new children as shown in Figure

3, where the crossover cell is indicated by an X.

X

Parents Children

Figure 3. Single point crossover

Using these crossover scheme, existing wall and void

structures are recombined without any knowledge of the

spaces that may exist in the game level map.

Mutation
The normal approach to mutation in a binary string GA is to

randomly flip bits with a very low probability, which in the

case of the game level maps would result a cell changing

from either a wall to a void, or vice versa. Initial trials

indicated that this strategy alone was disruptive and

impacted the ability to produce coherent and playable levels.

As with the initial level generation, this outcome triggered a

new thought process as to how to represent the morphing of

spaces with in a given level. As a result of this, an additional

strategy was implemented based on contiguous elements of

the level. The resulting mutation function selects a space at

random and mutates the edge of that space. This allows

spaces in the level to expand or contract in a mutation

operation. This may allow rooms to connect, become two

separate rooms, or carve a hallway over time.

Initially, each cell in the level was tested against a very

low probability of mutation to see if standard mutation

occurred. If no cell mutation occurred, the contiguous

mutation operator was applied. This selects a cell at random,

and finds the void containing that cell. If the cell is not

associated with a void, it selects another cell. There are two

different operations the mutation function can perform on a

space which either expand or contract the void, and for each

mutation the choice of operation is chosen at random. To

contract a void, each of the cells on the boundary of void is

tested against a mutation probability and if mutation occurs

the type of this cell flipped so that a void cell becomes a

wall. This is shown in Figure 4 where the initial mutation

site is shown with an X, and the set of cells available to

mutate shown dotted. In this case, cell Y is undergoing

mutation.

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

6

Y

X

Figure 4. Mutation strategy (Contraction) with void indicated by Cell X and the mutation site indicated by Cell Y

The expansion operation works in a similar fashion,

expect the cells available to flip are the external boundary of

the void. In the case shown in Figure 5, these cells are

shown as dotted and the expansion strategy has resulted in

two different contiguous voids joining together to create a

much larger navigable space in the game level.

Y

X

Figure 5. Mutation strategy (Expansion) with void indicated by Cell X and the mutation site indicated by Cell Y

The mutation operator is not limited to a mutation of a

single cell, with each of the cells in the mutation set being

tested against the mutation probability. The impact of this

particular mutation strategy is that existing wall or void

structures can grow or shrink relatively quickly, and are less

likely to be disrupted by random cell mutations. This has the

potential to result in more coherent and playable levels.

Fitness Function
The fitness function operates on the assumption that there is

a target ratio between space that can be traversed and the

total size of the level. Because the level map includes an

explicit entry and exit cell, there is also a requirement that

there must be at least one continuous path joining these two

cells for the level to be playable. The space ratio is the ratio

between the number of cells that are reachable in the largest

contiguous space in the level and the total amount of the

cells the level contains. The space ratio of a level can be

compared against the desired space ratio to give an error

value that indicates how far away any given level is from the

target. The actual space ratio () of the level is given by:

(2)

A. M. Connor, T. J. Greig and J. Kruse

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

7

where is the total number of cells in the level and is

the number of reachable cells in the largest contiguous

space. The space ratio error () is then given by:

(3)

Two other contributing factors are included in the fitness

function calculation that are used to determine to what

extent a continuous path exists between the entry and exit

cells of the level. These factors are the proximity of the main

space to the entry and exit cells are calculated as a ratio of

how close a cell in the largest contiguous space is located to

the entry (or exit) in relation to the distance between the

entry and exit cells. This is illustrated in Figure 6.

C

B

A

D

Figure 6. Proximity of largest space to entry and exit

The proximity of exit and entry are then determined by

the following distance ratios.

(4)

(5)

When the largest contiguous space includes either the exit

or entrance cells then the corresponding terms drops to zero.

These two terms are combined with the space ratio to create

the following fitness function.

(7)

For a level where the space utilisation of the largest

contiguous space is 70%, and the space contains both the

entry and exits cells, this results in a theoretical minimum

value of the fitness function of 1. Such clarity over a known

minimum is useful in the determination of how close any

given level is to a “perfect” level. The effectiveness of the

formulation of the fitness function will be discussed in

section 5 following the presentation of the results.

4. Game Level Evaluations

The evolutionary approach outlined in the previous section

has been evaluated for different sizes of levels. For each

size, the GA and random generation approach were repeated

ten times to take into account the stochastic nature of the

algorithm. For each approach, the settings associated with

the generation of each initial level were constant with an

overlap percentage of 50%.

The GA used a population size of 100, and was run for

100 generations. The GA was elitist, so that the best level in

each generation was transferred to the next generation. The

final solution for each run was the best ever solution found

in the total number of generations. For the random

generation baseline 10,000 candidate solutions were

generated for each run and the fitness of each computed

using the same fitness function before selecting the best

solution. The results for each size of level are presented in

the following sections, where each level is also evaluated

using the lens of computational creativity to determine

whether the levels could be considered a creative output.

4.1. Small levels (25x25)

For the purpose of this research, a small level is defined as a

grid with 25 cells on each dimension, resulting in a total

potential of 625 cells included in the level map. Table 1

outlines the quantitative data related to the generation of

solutions. Across the ten runs performed, the GA is more

consistent in finding high quality solutions with every final

level having the same resulting fitness. Whilst the

theoretical minimum of the fitness function is 1, in practice

this will not be achieved because the discrete nature of the

level is such that the number of cells included in a level will

never be exactly 70% of the 625 available cells. It can be

assumed that the GA consistently finds levels that are as

close to optimal as possible.

Table 1. Quantitative performance comparison (25x25)

GA Random

No. Evaluations 10,000 10,000

Mean Fitness 1.001601 1.1941024

Median Fitness 1.001601 1.197717

Best Fitness 1.001601 1.144044

Worst Fitness 1.001601 1.252609

Fitness (S.D.) 0 0.0338643

The statistics presented are representative of the ten final

solutions produced from each run of the solution method.

The generation of random levels exhibits both greater

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

A. M. Connor, T. J. Greig and J. Kruse

8

variability in final outcome as well higher fitness levels,

arguably showing that random level generation is not as

effective in finding good levels as the GA. In this context,

the term “good” is used in relation to the formulation of

fitness function rather than the actual playability of the

level. Actual playability can be considered by comparing the

best levels generated using the two different approaches.

The best solution from the 10 candidates generated using

random generation was selected purely on the fitness

function value, as a distinct best solution was identifiable.

However, multiple solutions generated using the GA had the

same fitness score and hence a best solution was selected by

visually inspecting the candidates. Such a subjective

evaluation is of course questionable, and the fact that it is

required suggests that the fitness function is not sufficiently

differentiating good characteristics in different levels. The

chosen solution and the best randomly generations solution

can be compared in Figure 7.

(a) GA (b) Random

Figure 7. Best candidate solutions (25x25)

Both of these levels are playable in the sense that there is

a continuous path between the entry and exit cells, however

the randomly generated level contains less open space and

more of a sense of distinct “rooms”. Given the observation

in the literature that generated levels “lack meaningful

macro-structure and a sense of progression and purpose”

[52] it is worth exploring these differences in more detail,

albeit qualitatively and subjectively.

Whilst the randomly generated levels have distinct

rooms, each is a relatively large open space and as such are

not likely to elicit any sense of surprise during gameplay.

An attempt could be made to produce a better gameplay

experience through inserting game elements such as doors

and enemies, but there are few areas where immediate line

of sight in the large spaces would not lead to an obvious

understanding of the situation.

In contrast, whilst the procedurally generated level has

one much larger space, it also contains some longer

corridors that would produce a sense of progression during

gameplay and many smaller spaces and hidden areas that

would allow a more surprising placement of game elements

Arguably, both levels could be used effectively within a top

down shooter game, despite the difference in fitness score

though both may result in a different player experience.

However, each could be tailored to a specific game

scenario in the downstream game design processes that

include the placement of game assets.

Given the small size of this level maps, it is difficult to

classify whether the procedurally generated level would be

considered as a creative outcome, and therefore identify

whether the approach is meeting the stated goals of

computational creativity. The only elements within the level

that add a sense of them potentially being the outcome of a

creative process are the various “pillars” in the interior of

the rooms which provide potential cover from enemy fire

during gameplay and would be features typically used by a

human game designer.

Such features are missing from the randomly generated

level, however the procedurally generated level is also

missing other aspects often included by human game

designers such as symmetrical design, maze-like topography

and identifiable shapes and features. Whilst the scale of the

solution limits the potential for this to be seen, it is unlikely

that a human game designer would consider this type of

level map as something creative

4.2. Medium levels (50x50)

For the purpose of this research, a medium level is defined

as a grid with 50 cells on each dimension, resulting in a total

potential of 2500 cells included in the level map. Table 2

outlines the quantitative data related to the solution

generation of the two approaches.

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

9

Table 2. Quantitative performance comparison (50x50)

GA Random

No. Evaluations 10,000 10,000

Mean Fitness 1.1057698 1.3673496

Median Fitness 1.105022 1.360535

Best Fitness 1.002401 1.305078

Worst Fitness 1.205604 1.43904

Fitness (S.D.) 0.0575286 0.0419825

As with the smaller level, the genetic algorithm is again

more consistent with finding highly fit solutions. However,

in this case the GA is not consistently finding the practically

optimal solution and fitness function values are generally

higher than with the smaller levels. The randomly generated

levels generally exhibit a more marked difference in terms

of worse fitness than was seen with the smaller 25x25 levels

and are again generally less fit than those levels discovered

by the GA. There is also a marginal increase in variability

when compared to the random generation of small levels.

Interestingly, the GA is more variable in its outcomes when

the standard deviation of fitness values is used as an

indication of spread. However, the worst level found by the

GA still has a better fitness than the best randomly

generated level.

The best solution from the 10 candidates generated using

each method could be selected purely on the fitness function

value as a distinct best solution was identifiable. This differs

from the results for the smaller levels where manual

inspection was required to determine a candidate solution

from those generated by the GA. The two solutions can be

compared in Figure 8.

(a) GA (b) Random

Figure 8. Best candidate solutions (50x50)

The distinction between these two levels is less marked

than with the smaller 25x25 levels. At this size, both levels

have the same potential to provide an engaging game level

as both levels exhibit a character of distinct rooms. The

marked difference in this case is that the evolved level has

less “clean lines” in terms of the boundaries of the spaces in

the level. Analysis of the evolution trajectory indicated that

the most significant changes occurred through crossover in

the early generations. However, once a good solution was

found, mutation become the dominant operator. Rather than

joining spaces as expected, mutation produces non-smooth

walls. A simple manual cleaning of the space would result in

a highly playable level.

With the increase in scale, the potential for overlap

between the “falling rectangles” in the randomly generated

level has resulted in a number of “pillars” as seen in the

smaller procedurally generated level (25x25). However, the

larger procedurally generated level also contains such

features as well as maintaining the narrow corridors. Whilst

the mutation operator is eroding the integrity of some spaces

through the creation of many single cell alcoves, it is also

the mutation operator that is the likely source of narrow

corridors. Both levels lack features that might be included

by a human designer and from a computational creativity

perspective, neither level includes would surprise or delight

a game designer inspecting the level maps nor be considered

“creative”.

4.3. Large levels (50x50)

For the purpose of this research, a large level is defined

as a grid with dimensions of 75 cells in each dimension,

resulting in a total of 5625 cells included in the level map.

Table 3 outlines the quantitative data related to the solution

generation of the two approaches.

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

A. M. Connor, T. J. Greig and J. Kruse

10

Table 3. Quantitative performance comparison (75x75)

GA Random

No. Evaluations 10,000 10,000

Mean Fitness 1.2234681 1.4419483

Median Fitness 1.224525 1.456114

Best Fitness 1.15319 1.334692

Worst Fitness 1.296359 1.553735

Fitness (S.D.) 0.0447513 0.063888112

The difference in performance seen when comparing the

50x50 data with the 25x25 data is repeated, but more

apparent. There is more variability in the fitness scores for

the randomly generated levels and again the actual fitness

scores are considerably higher than both that of the

randomly generated medium sized levels and the evolved

larger levels, suggesting that the solutions are further away

from the optimal case.

In this case, there was again a distinct best solution

identifiable from the ten solutions produced by the genetic

algorithm. This is shown in comparison with the best

randomly generated level in Figure 9. Again, the differences

between these levels is predominately related to the broken

nature of the room walls that has been caused by the

mutation operator. As with the medium sized levels, both

solutions offer very playable levels albeit with the suggested

manual cleaning of the evolved level. Saying this, the scale

of these levels is such that many of the spaces would be

considered fairly open during gameplay, particularly in the

procedurally generated level. Both levels also contain

multiple pathways between any two zones in the map which

would be relatively uncommon in many games that utilise

levels of this type.

(a) GA (b) Random

Figure 9. Best candidate solutions (75x75)

Whilst some features such as narrow corridors and pillars

exist, arguably these larger levels are less playable simply as

a result of the navigational uncertainty that would arise from

these multiple pathways. Neither would be considered as

particularly desirable (and hence creative) levels from the

perspective of a human game designer.

5. Discussion

The previous section has presented results that facilitate the

comparison of evolutionary procedural content generation

with the random generation of game levels. An increase in

size of the game level results in an increasingly complex

generation task, however in all cases both the genetic

algorithm and the random generation approaches find

feasible levels. However, as the size increases there is a

perceived lack of usefulness of the generated levels and

arguably a reduction in the level of creativity identifiable in

the levels.

The data presented in Tables 1-3 support the argument

that the complexity of the generation task increases as the

size of the level is increased. The increase in complexity can

also be evidenced by considering how the genetic algorithm

converges to a solution. Figure 10 shows the mean fitness

function of the best solution in each generation across the

ten runs of the genetic algorithm for each size of level.

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

11

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 10 20 30 40 50 60 70 80 90 100

F
it

n
e

s
s

Generation

(25x25) (50x50) (75 x 75)

Figure 10. Convergence of the genetic algorithm

As the size of the level increases, the rate of

convergence decreases and the quality of the final

solution is reduced according to the fitness function.

However, the current formulation of the fitness function

needs to be questioned. Whilst the GA finds supposedly

better solutions over time in comparison to the random

generation, visual inspection of the levels in Figures 6-8

suggests that the GA potentially produces levels that are

neither more or less playable than the randomly generated

levels, but are arguable slightly more fragmented both in

terms of the boundary walls and the overall space.

It is possible that this outcome is the result of the

fitness function not really differentiating between levels

with different desirability. For example, the two levels

shown in Figure 11 were produced by the genetic

algorithm and have the same fitness function score as the

level shown in Figure 6(a). Put simply, for the smaller

levels it is relatively easy for the GA to generate a

solution that meets the optimality criteria defined by the

fitness function, and many such solutions exist with

different characteristics that are not captured or

differentiated by the formulation of the fitness function.

(a) (b)

Figure 11. Game levels with the same fitness function

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

12

These two game levels have very different

characteristics than the level in Figure 6(a), and

consistently the randomly generated levels exhibit much

more of a “room and corridor” feel. Inspection of game

levels from successful games (e.g. Doom, Wolfenstein)

display the characteristic of distinct rooms connected by

corridors. However, whilst these levels are not potentially

useful or creative as a standalone entity, there is the

potential to utilise them as building blocks in a process to

assemble a larger, more useful and creative outcome. The

outcome of such a process is shown in Figure 12(a) in

comparison with a level from Doom in Figure 12(b)

sourced from the Doom Wiki [61].

To produce this game level map, five of the final

solutions from the genetic algorithm were selected at

random. Each level map was parsed to identify similar

features or spaces, then these were aligned by using a

series of translations to produce a larger combined level

map. Finally, single-cell artefacts were algorithmically

removed to produce a “clean” level map.

(a) (b) [61]

Figure 12. Comparison of combined level with a commercial game level map

This process has produced what is an inherently playable

level that immediate intrigues the game designer to

inspect and analyse the topographical structure of the

level. This level can be visually compared to a level from

a commercial game with immediate parallels in terms of

space distribution and ratios of distances and would be a

candidate level for identifying whether procedurally

generated content can produce immersion and

engagement [62]. As a result, this process fits with in the

definition of creative computing discussed by LIU [11]

whereby there are “programs that can enhance human

creativity without necessarily being creative

themselves”. Similarly, this as an example of co-

evolution, enabled by feedback, which has been

considered as an essential element of creative artistic

and technical development [63]. The initial intention of

using genetic algorithms as a generative system led to the

conclusion that a simplistic fitness function was not

sufficient to produce creative outcomes, which then

resulted in reflective process between developer and game

designer that led quickly to a pragmatic alternative that

draws upon elements of cellular automata that produces

usable and stimulating outcomes. Despite this, given that

generation of original content has been stated as a

challenge for PCG [52], clearly more effort is required in

formulating an appropriate fitness function to differentiate

levels that are likely to exhibit a sense of progression and

purpose. This could be achieved through characterising

the spaces created in the level as either rooms or corridors

and seeking a balance between the two types. This could

be further extended through formulating a fitness function

that embraces novelty, an approach that has seen

considerable successes in other domains [64, 65]

In addition to the formulation of the fitness function,

the fragmentation of the space in the evolved levels could

be due to a number of factors. Arguably, all of the

evolved levels show a much greater percentage of open

space than the randomly generated levels. In this sense,

the genetic algorithm is successful in that it is managing

to move levels towards the desired space ratio. Setting the

desired space ratio lower could significantly alter the

results.

The fragmentation may also be the result of the genetic

operators disrupting the coherence of the space over time.

This can be supported in part by inspecting the best level

by generation. For most of the cases, the genetic

algorithm typically maintained a stronger room/corridor

feel for the first 20-30 generations and at that point

A. M. Connor, T. J. Greig and J. Kruse

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

13

fragmentation occurred though the increasing significance

of the mutation operator. A less aggressive mutation

strategy would be valuable, as would a fitness function

that can differentiate between levels with different

characteristics. It is possible that because the fitness

function is not differentiating between levels as most

levels would include the start and end point in the main

contiguous space. Rather than being a directed,

randomised search the genetic algorithm would

essentially be selecting completely random individuals for

mating and as a result evolution is no longer occurring.

Future work will therefore focus on the development of

a more robust fitness function in the first instance. This

fitness function needs to encapsulate a design goal or

indeed multiple goals, which would facilitate further work

that would allow the potential value of evolutionary PCG

approaches to be determined. A more rigorous approach

to evaluating the content generation approach will be

implemented [66] and the outcomes will be compared to a

selected set of alternative algorithms selected through a

comprehensive review of existing methodologies for

PCG.

The research direction will include the development of

goal-specific genetic operators that are targeted towards

the non-fragmentation of game level maps. However,

future research will also consider the compositing of sub-

sections of level maps into a larger whole to address the

challenges identified with scaling.

The challenge of generating original or novel content

procedurally for game designers remains relevant, but the

results in this paper indicate that relative simple fitness

functions can produce playable levels and certainly at the

smaller scale these exhibit many desirable characteristics.

Similarly, the recombination of elements that in

themselves may not be considered a creative outcome

have the potential to produce levels that have features

comparable to those produced by human game designers..

6. Conclusions

This paper has presented results that compare the use of a

genetic algorithm as an evolutionary PCG approach with

a simple random generation of game content. This

comparison needs to take place in two dimensions,

namely the quality of the resulting game content and the

process of game content creation.

In terms of the quality of the resulting game content,

the genetic algorithm can produce playable game levels

but these levels do not have the same appeal as the

randomly generated game levels. The space in the evolved

levels is both more open and more fragmented, which

suggests that the levels may not be as engaging for a

player. This fragmentation is more apparent as the size of

the game level increases.

However, in terms of the process of content generation,

the genetic algorithm has been shown to be more

consistent in terms of finding high quality solutions. In

this instance, the genetic algorithm has been led

somewhat astray by the formulation of a fitness function

that doesn’t capture whether a candidate game level is

likely to be engaging. his stresses the importance of the

role of the fitness function when using evolutionary

algorithms, however this paper also provides insight in to

the possibility of producing creative outcomes from

essentially non-creative components.

References

[1] BLOW, J. (2004) Game development: Harder than you

think. Queue 1(10): 28-37.

[2] KÖHLER, B., HALADJIAN, J., SIMEONOVA, B., and

ISMAILOVIĆ, D. (2012) Feedback in low vs. high fidelity

visuals for game prototypes. In Proceedings of the Second

International Workshop on Games and Software

Engineering: Realizing User Engagement with Game

Engineering Techniques, Zurich, Switzerland 2-9 June

(Zurich, Switzerland IEEE), 42-47

[3] IOSUP, A. (2011) POGGI: generating puzzle instances for

online games on grid infrastructures. Concurrency and

Computation: Practice and Experience 23(2): 158-171.

[4] TOGELIUS, J., CHAMPANDARD, A.J., LANZI, P.L.,

MATEAS, M., PAIVA, A., PREUSS, M., and STANLEY,

K.O. (2013) Procedural content generation: Goals,

challenges and actionable steps. In Proceedings of the

Dagstuhl Follow-Ups, Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik),

[5] HENDRIKX, M., MEIJER, S., VAN DER VELDEN, J.,

and IOSUP, A. (2013) Procedural content generation for

games: A survey. ACM Transactions on Multimedia

Computing, Communications, and Applications 9(1):

Article 1.

[6] EDWARDS, R. (2006) The economics of game

publishing. IGN Entertainment Inc.

[7] RODEN, T. and PARBERRY, I. (2004) From artistry to

automation: A structured methodology for procedural

content creation. In Proceedings of Entertainment

Computing–ICEC 2004. Springer.

[8] HUGILL, A. and YANG, H. (2013) The creative turn: new

challenges for computing. International Journal of

Creative Computing 1(1): 4-19.

[9] YANG, H. and ZHANG, L. (2016) Promoting Creative

Computing: origin, scope, research and applications.

Digital Communications and Networks 2(2): 84-91.

[10] LIAPIS, A., YANNAKAKIS, G.N., and TOGELIUS, J.

(2014) Computational Game Creativity. In Proceedings of

the Fifth International Conference on Computational

Creativity, Ljubljana, Solvenia, 9th – 13th June (Ljubljana,

Solvenia: Association for Computational Creativity), 46-53

[11] LIU, L. (2016) When intelligence meets data: game story

generation by compositional creativity. International

Journal of Creative Computing 1(2-4): 274-307.

[12] BODEN, M. (2003) The Creative Mind: Myths and

Mechanisms. London: Routledge.

[13] TOGELIUS, J., KASTBJERG, E., SCHEDL, D., and

YANNAKAKIS, G.N. (2011) What is procedural content

generation?: Mario on the borderline. In Proceedings of

the 2nd International Workshop on Procedural Content

Generation in Games, 1-6.

[14] KHALED, R., NELSON, M.J., and BARR, P. (2013)

Design metaphors for procedural content generation in

games. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 1509-1518.

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

A. M. Connor, T. J. Greig and J. Kruse

14

[15] SMITH, G., GAN, E., OTHENIN-GIRARD, A., and

WHITEHEAD, J. (2011) PCG-based game design:

enabling new play experiences through procedural content

generation. In Proceedings of the 2nd International

Workshop on Procedural Content Generation in Games, 1-

4.

[16] SMITH, G., WHITEHEAD, J., and MATEAS, M. (2010)

Tanagra: A mixed-initiative level design tool. In

Proceedings of the Fifth International Conference on the

Foundations of Digital Games, ACM), 209-216

[17] TREANOR, M., BLACKFORD, B., MATEAS, M., and

BOGOST, I. (2012) Game-o-matic: Generating

videogames that represent ideas. In Proceedings of the

Procedural Content Generation Workshop at the

Foundations of Digital Games Conference,

[18] WHITEHEAD, J. (2010) Toward proccedural decorative

ornamentation in games. In Proceedings of the 2010

Workshop on Procedural Content Generation in Games,

ACM, 9

[19] MARK, B. and BERECHET, T. (2014) Procedural 3D

Cave Generation, MA thesis. IT University of

Copenhagen, 2014.: http://benjaminmark.

dk/Procedural_3D_Cave_Generation. pdf

[20] SMELIK, R., TUTENEL, T., DE KRAKER, K.J., and

BIDARRA, R. (2010) Integrating procedural generation

and manual editing of virtual worlds. In Proceedings of the

2010 Workshop on Procedural Content Generation in

Games, ACM, 2

[21] KRUSE, J., SOSA, R., and CONNOR, A. (2016)

Procedural urban environments for FPS games. In

Proceedings of the Australasian Computer Science Week

Multiconference, 1-5.

[22] DORMANS, J. (2010) Adventures in level design:

generating missions and spaces for action adventure

games. In Proceedings of the 2010 workshop on

procedural content generation in games, ACM), 1

[23] BOURKE, P. and SHIER, J. (2013) Space Filling: A new

algorithm for procedural creation of game assets. In

Proceedings of the 5th Annual International Conference on

Computer Games Multimedia & Allied Technology,

[24] DRAGERT, C., KIENZLE, J., VANGHELUWE, H., and

VERBRUGGE, C. (2011) Generating extras: Procedural

AI with statecharts.

[25] LEE, Y.S. and CHO, S.B. (2011) Context-Aware Petri Net

for Dynamic Procedural Content Generation in Role-

Playing Game. IEEE Computational Intelligence Magazine

6(2): 16-25.

[26] SMELIK, R.M., TUTENEL, T., DE KRAKER, K.J., and

BIDARRA, R. (2011) A declarative approach to

procedural modeling of virtual worlds. Computers &

Graphics 35(2): 352-363.

[27] SMITH, A.M. and MATEAS, M. (2011) Answer Set

Programming for Procedural Content Generation: A

Design Space Approach. IEEE Transactions on

Computational Intelligence and AI in Games 3(3): 187-

200.

[28] NELLIS, A. and STEPNEY, S. (2014) Computational

novelty: Phenomena, mechanisms, worlds. H. Sayama, J.

Rieffel, S. Risi, R. Doursat, & H. Lipson (Eds.), Artificial

life 14: 506-513.

[29] GOERTZEL, B., PENNACHIN, C., and GEISWEILLER,

N. (2014) Probabilistic Evolutionary Procedure Learning.

In Engineering General Intelligence, Part 2. Springer.

[30] OZOLA, S. (2013) Synthesis of Nature and Art in Latvian

Cities. GENERATIVE ART 2013: 234.

[31] BENTLEY, P. (1999) Aspects of evolutionary design by

computers. In Advances in Soft Computing. Springer.

[32] KORDON, A.K. (2010) Evolutionary Computation: The

Profitable Gene. In Applying Computational Intelligence.

Springer).

[33] TOGELIUS, J., YANNAKAKIS, G.N., STANLEY, K.O.,

and BROWNE, C. (2011) Search-Based Procedural

Content Generation: A Taxonomy and Survey. IEEE

Transactions on Computational Intelligence and AI in

Games 3(3): 172-186.

[34] HARMAN, M. (2007) The current state and future of

search based software engineering. In Proceedings of the

2007 Future of Software Engineering, IEEE Computer

Society), 342-357

[35] CONNOR, A.M., CLARKSON, P.J., SHAPAR, S., and

LEONARD, P. (2000) Engineering design optimization

using Tabu search. In Proceedings of the Design for

Excellence: Engineering Design Conference 2000, John

Wiley & Sons, 371-378

[36] BENTLEY, P.J. and WAKEFIELD, J.P. (1998) Finding

acceptable solutions in the pareto-optimal range using

multiobjective genetic algorithms. In Soft computing in

engineering design and manufacturing. Springer.

[37] DE BEIR, A. and VANDERBORGHT, B. (2016)

Evolutionary method for robot morphology: Case study of

social robot Probo. In Proceedings of the 11th ACM/IEEE

International Conference onHuman-Robot Interaction,

IEEE), 609-610.

[38] CALDAS, L.G. and NORFORD, L.K. (2002) A design

optimization tool based on a genetic algorithm. Automation

in construction 11(2): 173-184.

[39] JOACHIMCZAK, M., SUZUKI, R., and ARITA, T.

(2015) Improving evolvability of morphologies and

controllers of developmental soft-bodied robots with

novelty search. Frontiers in Robotics and AI 2: 33.

[40] COOK, R.G. and QADRI, M.A. (2013) The adaptive

analysis of visual cognition using genetic algorithms.

Journal of Experimental Psychology: Animal Behavior

Processes 39(4): 357.

[41] NORTON, D., HEATH, D., and VENTURA, D. (2014)

Autonomously Managing Competing Objectives to

Improve the Creation and Curation of Artifacts. In

Proceedings of the ICCC, 23-32.

[42] TOGELIUS, J., YANNAKAKIS, G.N., STANLEY, K.O.,

and BROWNE, C. (2010) Search-based procedural content

generation. In Applications of Evolutionary Computation.

Springer.

[43] BARRETO, N., CARDOSO, A., and ROQUE, L. (2014)

Computational Creativity in Procedural Content

Generation: A State of the Art Survey. In Proceedings of

the 2014 Conference of Science and Art of Video Games,

[44] RACHMAWATI, L. and SRINIVASAN, D. (2006)

Preference incorporation in multi-objective evolutionary

algorithms: A survey. In Proceedings of the IEEE

Congress on Evolutionary Computation, IEEE, 962-968

[45] KRUSE, J. and CONNOR, A.M. (2015) Multi-agent

evolutionary systems for the generation of complex virtual

worlds. EAI Endorsed Transactions on Creative

Technologies 2(5): e5.

[46] CARDAMONE, L., LOIACONO, D., and LANZI, P.L.

(2011) Interactive evolution for the procedural generation

of tracks in a high-end racing game. In Proceedings of the

13th annual conference on Genetic and Evolutionary

Computation, 395-402.

[47] WALSH, P. and GADE, P. (2010) Terrain generation

using an interactive genetic algorithm. In Proceedings of

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

15

the 2010 IEEE Congress on Evolutionary Computation

IEEE, 1-7.

[48] ØLSTED, P.T., MA, B., and RISI, S. (2015) Interactive

evolution of levels for a competitive multiplayer fps. In

Proceedings of the 2015 IEEE Congress on Evolutionary

Computation (CEC), IEEE, 1527-1534

[49] ASHLOCK, D., LEE, C., and MCGUINNESS, C. (2011)

Search-based procedural generation of maze-like levels.

Computational Intelligence and AI in Games, IEEE

Transactions on 3(3): 260-273.

[50] HARTSOOK, K., ZOOK, A., DAS, S., and RIEDL, M.O.

(2011) Toward supporting stories with procedurally

generated game worlds. In Proceedings of the 2011 IEEE

Conference on Computational Intelligence and Games

(CIG), IEEE), 297-304

[51] SORENSON, N. and PASQUIER, P. (2010) Towards a

Generic Framework for Automated Video Game Level

Creation. In DI CHIO, C., CAGNONI, S., COTTA, C.,

EBNER, M., EKÁRT, A., ESPARCIA-ALCAZAR, A.I.,

GOH, C.-K., MERELO, J.J., NERI, F., PREUß, M.,

TOGELIUS, J., and YANNAKAKIS, G.N. [ed.]

Applications of Evolutionary Computation:

EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES,

EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC,

Istanbul, Turkey, April 7-9, 2010, Proceedings, Part I.

(Berlin, Heidelberg: Springer Berlin Heidelberg), ch.

[52] TOGELIUS, J., CHAMPANDARD, A.J., LANZI, P.L.,

MATEAS, M., PAIVA, A., PREUSS, M., and STANLEY,

K.O. (2013) Procedural content generation: Goals,

challenges and actionable steps. In LUCAS, S.M.,

MATEAS, M., PREUSS, M., SPRONCK, P., and

TOGELIUS, J. [ed.] Artificial and Computational

Intelligence in Games (Dagstuhl: Schloss Dagstuhl--

Leibniz-Zentrum fuer Informatik), ch.

[53] GREIG, T.J. (2016) Evaluating the perceived immersion of

procedurally generated game levels, Master of Creative

Technologies, Auckland University of Technology

[54] HOLLAND, J.H. (1975) Adaptation in natural and

artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence:

U Michigan Press.

[55] HAIDAR, A., NAOUM, S., HOWES, R., and TAH, J.

(1999) Genetic algorithms application and testing for

equipment selection. Journal of Construction Engineering

and Management 125(1): 32-38.

[56] CONNOR, A.M. (1996) The synthesis of hybrid

mechanisms using genetic algorithms, PhD, Liverpool

John Moores University

[57] CANFORA, G., DI PENTA, M., ESPOSITO, R., and

VILLANI, M.L. (2005) An approach for QoS-aware

service composition based on genetic algorithms. In

Proceedings of the 7th Annual Conference on Genetic and

Evolutionary Computation, ACM, 1069-1075

[58] GEIGEL, J. and LOUI, A.C. (2000) Automatic page layout

using genetic algorithms for electronic albuming. In

Proceedings of the Photonics West 2001-Electronic

Imaging, International Society for Optics and Photonics),

79-90

[59] SIVANANDAM, S. and DEEPA, S. (2007) Introduction

to genetic algorithms: Springer Science & Business Media.

[60] SCHMITT, L.M. (2001) Theory of genetic algorithms.

Theoretical Computer Science 259(1): 1-61.

[61] DOOMWIKI. (2005)

http://doom.wikia.com/wiki/File:E3M4_map.png,

[62] CONNOR, A.M., GREIG, T.J., and KRUSE, J. (2017)

Evaluating the Impact of Procedurally Generated Content

on Game Immersion. The Computer Games Journal 6(4):

209-225.

[63] BATTEY, B. (2016) Creative computing and the

generative artist. International Journal of Creative

Computing 1(2-4): 154–173.

[64] BERNDT, D., FISHER, J., JOHNSON, L., PINGLIKAR,

J., and WATKINS, A. (2003) Breeding software test cases

with genetic algorithms. In Proceedings of the 36th Annual

Hawaii International Conference on System Sciences,

IEEE, 10 pp.

[65] MOURET, J.-B. (2011) Novelty-based

multiobjectivization. In New horizons in evolutionary

robotics. Springer.

[66] SHAKER, N., SMITH, G., and YANNAKAKIS, G.N.

(2016) Evaluating content generators. In Procedural

Content Generation in Games. Springer International

Publishing.

Evolutionary generation of game levels

EAI Endorsed Transactions
on Creative Technologies

01 2018 - 04 2018 | Volume 5 | Issue 15 | e4

