

Tour Navigation: A Cloud Based Tourist Navigation System

Junhao Li

A thesis submitted to

Auckland University of Technology

in partial fulfilment of the requirements for the degree

of

Master of Computer and Information Sciences (MCIS)

2014

School of Computer and Mathematical Sciences

Abstract

Google and Apple have provided precise navigation and locating service in outdoor

environment. Tourists in New Zealand are able to identify their current location on a

map and use navigation services provided by smartphones with Global Positioning

Systems (GPS). However Google Map and IOS Map cannot provide navigation and

locating service in indoor environments as the GPS signal is blocked within building

interior. This thesis proposes a system to provide convenient and efficient tour

navigation service to smartphone users no matter they are indoors or outdoors. In order

to provide this service, this thesis implements back-end server on the Cloud Computing

platform Google App Engine to calculate the navigation path for mobile users when

indoors. Elastic cloud computing platform makes the system efficient at handling

considerable number of requests while maintenance costs of the system are affordable.

In addition, the mobile application Tour Navigation is developed as the interface

between users and cloud service. By the clever use of QR codes with Tour Navigation,

users are able to know their current location and query the shortest path to destination

by sending requests to the cloud server.

This thesis presents the NZ Tour Navigation System which is an affordable and

easily-implemented technical solution for indoor navigation. What is more, it proves

that the cloud computing platform is able to be the robust server for mobile applications,

capable of handling complicated computing tasks.

I

Contents

Chapter 1 Introduction ... 1

 Background ... 2 1.1

 Research Questions... 11 1.2

 Contributions .. 12 1.3

 Overall Methodology .. 13 1.4

Chapter 2 Literature Review .. 14

2.1 Navigation ... 15

2.2 QR Code .. 17

2.3 Shortest Path ... 19

2.4 Cloud Server ... 28

2.5 Android .. 33

2.6 Summary ... 36

Chapter 3 Methodology.. 38

3.1 Gaining Software Requirement ... 39

3.2 Methodology for System Design .. 41

3.3 Method of Data Acquisition and Storage .. 42

3.4 Method of Testing ... 44

Chapter 4 Software Requirements Detail ... 46

4.1 Requirements detailed by Natural Language .. 47

4.2 Use Case Analysis ... 49

Chapter 5 System Design ... 54

5.1 MVC of the Software System ... 55

5.2 System Architecture .. 56

5.3 GUI Design ... 60

5.4 Database Design .. 63

5.5 Design Decisions and Development Environment ... 64

Chapter 6 System implementation ... 65

6.1 Weather Forecast ... 66

6.2 City General Introduction ... 67

6.3 Nearby Tourist Attractions .. 68

6.4 Tourist Attraction Site Information ... 69

6.5 Locating and Navigation ... 70

6.6 Exhibited Objects .. 72

Chapter 7 System Testing and Demonstration ... 74

7.1 Weather Forecast ... 75

7.2 City General Introduction ... 76

7.3 Nearby Tourist Attraction .. 79

7.4 Building Description ... 80

II

7.5 Exhibited object introduction .. 82

7.6 Shortest path navigation .. 83

Chapter 8 Conclusion ... 85

Conclusion .. 86

References ... 89

III

List of Figures

Figure 1.1 The structure of myMytileneCity ... 4

Figure 1.2 The format of XML file .. 5

Figure 1.3 The whole process to generate the app ... 7

Figure 1.4 The whole structure of the traditional model .. 8

Figure 1.5 The whole structure of the indoor model .. 9

Figure 2.1 The shortest path algorithm .. 23

Figure 2.2 The improved shortest path algorithm .. 24

Figure 2.3 Indoor building map ... 25

Figure 2.4 Indoor building model .. 25

Figure 2.5 Sub-graphs of the whole building ... 27

Figure 2.6 Servlet model .. 32

Figure 2.7 JSON format ... 33

Figure 2.8 Download mechanism .. 34

Figure 3.1 Actor ... 41

Figure 4.1 Overall system UML use case .. 50

Figure 4.2 Use Case 1: City general introduction .. 50

Figure 4.3 Use case 2: Nearby tour attractions .. 51

Figure 4.4 Use case 3：Site navigation ... 52

Figure 5.1 Relation between Model, View and Controller .. 55

Figure 5.2 Relation between mobile and Google App Engine 56

Figure 5.3 Modules relation ... 56

Figure 5.4 Modules in Weather Forecast ... 57

Figure 5.5 Other modules ... 58

Figure 5.6 Weather Forecast ... 60

Figure 5.7 General Introduction of City ... 61

Figure 5.8 Tourist Attractions... 61

Figure 5.9 General Introduction of Tourist Attraction ... 62

Figure 5.10 QR Code Scan... 62

Figure 5.11 Path Navigation... 63

Figure 5.12 Development Environment ... 64

Figure 6.1 Permission Claims .. 66

Figure 7.1 Welcoming page ... 75

Figure 7.2 Loading bar ... 75

Figure 7.3 Weather forecast ... 76

Figure 7.4 Returned general introduction data ... 77

Figure 7.5 City general description .. 78

Figure 7.6 Long description ... 79

Figure 7.7 Nearby tour attraction data ... 79

IV

Figure 7.8 Polygons ... 80

Figure 7.9 Building Description Data .. 81

Figure 7.10 Building description ... 82

Figure 7.11 Exhibited object description data .. 82

Figure 7.12 Exhibited object .. 83

Figure 7.13 URLs of shortest path pictures ... 83

Figure 7.14 Navigation pictures ... 84

V

List of Tables

Table 3.1 Requirement Format ... 39

Table 4.1 Use case index (Use Case One) .. 51

Table 4.2 Use case index (Use Case Two) ... 51

Table 4.3 Use case index (Use Case Two) ... 52

Table 6.1 City general introduction .. 67

Table 6.2 Nearby tour attraction ... 69

Table 6.3 Vertices ... 70

Table 6.4 Exhibited Object ... 73

Table 7.1 City general introduction testing result .. 78

Table 7.2 Nearby tour attraction testing resul .. 80

Table 7.3 Building introduction testing result .. 81

Table 7.4 Navigation path testing result ... 84

VI

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.

Signature: Date:

VII

Acknowledgements

I wish to thank my parents for their love and support. Members of the School of

Computer and Mathematical Sciences at AUT University have been significantly

helpful in bringing this work to completion. I appreciate all teachers, supervisors and

administration staff especially. My supervisors Shoba Tegginmath and Dr. Weiqi Yan

have put in a great deal of effort into guiding and supporting me with dedication..

 Junhao Li

 Auckland

June 2014

1

Chapter 1 Introduction

In this thesis, a mobile application called Tour Navigation, supported by cloud

computing, is designed and implemented for the purpose of guiding tourists in both the

indoor and outdoor environments. First of all, this chapter considers the factors that

influence New Zealand tourism and goes on to discuss how smartphones could boost

New Zealand tourism. Several temporal technical solutions of mobile tour guides and

mobile applications are reviewed. After providing a critical analysis of why cloud

computing platform is chosen as data server over traditional servers, research questions

of this thesis are given. The chapter concludes by detailing the structure of this thesis.

2

 Background 1.1

1.1.1 Travelling in New Zealand

New Zealand still preserves its stunning mountains, rivers forests, beaches and other

original landscapes spaces (Alessio, 2010). The fabulous rural landscape appearing on

the printed guidebooks explains why a significant number of tourists consider this

Oceania country on the top of the list of tour destinations. In addition, buildings have

been constructed constantly since the nineteenth century in order to attract enough

permanent migrants from Common Wealth countries and short-term visitors from the

Anglo American world. Thus, New Zealand’s urban centers also have captured national

and international visitors’ attentions (Alessio, 2010).

However, the tourism market of New Zealand is highly affected by financial factors.

Since New Zealand is located far away from major continents, tourists have to pay

significant amounts of money on transportation and accommodation. High expense has

been the major element that affects whether a tourist would choose New Zealand as a

tour destination or not (Schiff & Becken, 2011).

New Zealand has its own inherent advantages that could make it the most popular tour

attraction such as well-preserved ancient architectures and tremendous landscapes.

However, considering the disadvantages such as high travel expense, some measures

need to be taken to attract visitors to New Zealand; measures such as mobile

applications that make it easy for foreigners to find their way around tourist attractions.

Smartphones are a ubiquitous tool and are the ideal medium to use to boost New

Zealand tourism.

1.1.2 Smartphone and Tourism

In contrast to traditional products that could be observed before purchase, tourism is

an intangible experience that always comes with uncertainty and risks (Goossens, 1995).

In general, tourists would tend to collect significant amount of information to make

decisions of where to go before the journey or during the journey, since tourists possess

3

limited information and experience about the place they intend to travel within. Most

tourists hope to maximize their pleasure in the experience under the condition of limited

time and financial budget (Oh, Kim, & Jayakrishnan, 2012). Considering that high

expense of accommodation and transportation required to travel to and within New

Zealand, precise, timely and appropriate tourism information would be a highly

valuable asset that helps tourists make wise choices.

According to relevant research on tourism, the use of certain media and images would

create the basis for a system for tourists about selecting (Pan, Tsai, & Lee, 2011). Apart

from objective data or text descriptions, vivid media content would also make a

difference. After considering the characteristics of the smartphone one could easily

reach the conclusion that a smartphone could be the platform for a convenient and

mobile electronic tour guide providing such information. For example, positioning

through GPS is able to provide precise location as well as information about nearby tour

attractions. Today, with instant internet connection the information tourists receive can

be updated as often as required. Thus, the information they receive would tend to be

relatively precise and timely. This can be compared with traditional tourism where

tourists have to utilize the combination of map and tour guide book to discover where

they are and what places are worth travelling to. In addition, traditional tour guide

books could be out-of-date with respect to the contents, and only provide one-way

information. Smartphones have the capability to enable tourists to personalize content

they are interested in. What is more, smartphones with connection to popular social

networks may be the catalyst that triggers tourists’ enthusiasm to travel (Kenteris,

Gavalas, & Economou, 2009).

1.1.3 Review of Relevant Solutions

Admittedly, this thesis is not the first to discover the significance of the electronic tour

guide. There have been several suggested ideas in other theses and implemented

smartphone applications (or apps) on various app stores. In this section, these technical

solutions are critically reviewed to identify any deficiencies in existing solutions. Based

on the drawbacks, motivation of this thesis will be generated.

4

The first model was designed in 2009 when smartphones were still not pervasive

(Kenteris et al., 2009). This model, named myMytileneCity, offered the tour information

of Lancaster, UK. The model was implemented through Java and relevant XML

technology, see Figure 1.1, as at that time smartphone technology was still far from

mature.

Figure 1.1 The structure of myMytileneCity

The user would first go to myMytileneCity web site to choose content, such as

recommended restaurants, activities, hotels. Once the user defined her/his preferred

content, the user-specific requirements of content would be defined in an XML file

stored on the web server.

The format of the XML file is defined as in Figure 1.2. The server would generate the

MIDlet, namely the J2ME application, according to the requirement of the XML file.

The user could download the application from the server and install it on the mobile

phone for further tour use.

5

Figure 1.2 The format of XML file

When the content that matches user preference has been updated, the server would send

a text message to the user to alert her or him to download the updated application from

the server and re-install it on the mobile phone again.

There are several advantages of this model. Firstly, since the application has embedded

content, it could run in offline state. Constant connection with Internet is not a

prerequisite of this model. Secondly, users could personalize the content they are

interested in. Time is saved by filtering the content by tourist’s preference.

Although the application could run in an offline state, stored content would have

requirements on the limited memory space of the mobile phone. Generally, tour

information would include pictures or videos rather than plain document description.

Whether a mobile phone could store all the multimedia tourism information is doubtful.

Apart from this deficiency, updated content cannot be shown simultaneously on the

phone; more manual operations from the user are needed to be executed. Last but not

least, the efficiency of operating server could not be guaranteed. Lancaster is a fabulous

tour city; as a result overwhelming number of connections from tourists’ mobile phones

is likely to be demanded. Also, the server has to store large quantity of tourism contents.

Therefore it is probable that the traditional server may encounter bottlenecks in

providing services.

6

The second thesis (Masoumeh & Mehregan, 2012) suggested that recommendations

could be provided to users based on the result of data mining. This system clustered all

customers according to their tour location first, so as to reduce the workload of search

and create the neighborhood of tourists. In the second step, profiles of tourists were

created including behavioral pattern, rating of purchased goods and content of the tours.

In the last stage a two-level graph was created consisting of the tour-tour and

tourism-tour similarities. Finally, recommendations could be made to tourists in the

same category regarding tour attractions and items which are worth purchasing based on

the tour behavior of other members and rating of purchased goods from other members

in the same group. Data mining is undoubtedly useful for other business analysis such

as in supermarkets that email their customers specific discount information based on

customers’ purchase records. However, the question of whether data mining could be

used practically to boost tourism remains doubtful. First of all, the first step of data

mining performed was to categorize tourists according to their location. However,

unlike customers of supermarkets who would normally frequent certain fixed

supermarket branches in months, tourists may change their locations in days. Relatively

long-time consumption in data mining may make the result hard to adapt to tourism.

Secondly, the authors also admitted the limitation that there were problems of sparsity in

the data that could not be ignored. Since data mining is conducted on the basis of large

data, the number of tourists and tour attractions are large. In this scenario, even

energetic tourists may have travelled less than 1% of the tour attractions. So, the

tourist-tour attractions interaction matrix could be sparse. While the intention was to

provide users tourism content based on their interest, providing such choices to tourists

through data mining has not been shown to be an appropriate choice.

On the other hand, Höpken, Fuchs, et al. (2010) suggest that context-aware data mining

may be suitable for tour guide applications as context awareness will help to provide

information relevant to tourists’ location changes. This would avoid information

overload for the tourists and a context adaptive tour guide could provide nearby

information according to the tourist’s location change. Within context adaptive systems,

location is the major criterion to be considered since continuous information update

7

requires changing information about the location. However, the study only considered

the change of outdoor location and ignored indoor locations. In practical scenario,

tourists would not only explore outdoor landscape but also indoor buildings.

The fourth study (Rodriguez-Sanchez, Martinez-Romo, Borromeo, &

Hernandez-Tamames, 2013) did cover indoor locating. This study offered an idea for

electronic tour guide not only covering outdoor location but also being aware of indoor

context. In outdoor scenario, as we are all familiar, the location is provided by GPS. In

indoor scenario, the smartphone could receive the location feedback from blue tooth

signal or reading the QR code. The graph presented in fig 1.3 illustrates the whole

process:

Figure 1.3 The whole process to generate the app

Source: (Rodriguez-Sanchez et al., 2013)

In the first step, the user would retrieve the precise current location through the

Bluetooth or QR Code. After getting the precise location, users choose what they would

like to browse, such as restaurants, museums or theaters. Next the user chooses the

smartphone platform her/his smartphone is running on. After all these procedures, the

server would generate the app containing chosen context which the user had to

download and install. Once the user had downloaded the app from the website and

installed it on the phone, the electronic guide could be accessed from various locations.

Compared to ideas from other studies discussed earlier, Rodriguez-Sanchez et al (2013)

8

advised that indoor locating could be conducted through Bluetooth or QR Code. In

practical scenario, QR Code has some advantages; the code can be printed on a piece of

paper and can be read by a code reader. Savings on hardware expenses could be

significant. However, the major deficiency of this design is lack of constant update of

information. Defined contents are included in the application and so, contents cannot be

updated immediately on location change of the user. What is worse, due to the limitation

of disk and memory of smartphones, storage of downloaded content takes up a good

deal of space which is not ideal. Given a smartphone’s limitations of disk and memory,

what would be ideal would be for the smartphone to be the interface between users and

back-end servers.

As to the design of the structure of the tour guide system, the most traditional one is

GPS-Server-Mobile model (Chang-Jie & Jin-Yun, 2008), shown in Figure 1.4.

Figure 1.4 The whole structure of the traditional model

This model is deployed at Dunhuang Mogao Grottoes in China for tour guiding. As can

be seen from the Figure, the mobile terminal clients firstly receive location information

from the GPS. Through wireless network, requests are transferred to several different

servers. According to specific location, information of nearby attractions is transferred

back to the mobile client.

The major deficiencies of this model are: firstly, the tour guide model would not cover

the indoor areas where GPS signal is significantly blocked. Secondly, similar to ideas

posted by previous research, this model could encounter bottleneck during times when

9

there are a great number of requests from clients. Thus there are obstacles to

maintaining efficiency in the model.

Another tour guide model mainly serves indoor scenarios such as art gallery or museum

(Hsu & Liao, 2011; Kingston et al., 2012). In this model, the total indoor surrounding is

described as a tree. The root is the building. The building has floors as branches. Each

floor has rooms as branches. Each room has exhibited objects as branches. Each

exhibited object has its own RFID tag which contains its location information. Once the

RFID reader gets the location information, the reader receives relevant illustration

information of the exhibited object.

Figure 1.5 The whole structure of the indoor model

As can be seen from the Figure 1.5, there are mainly three parties in this model, namely

exhibits, RFID PDA (or smartphone) and the server. Usually the RFID tag is attached

on the exhibited object. When the PDA reads the signal, it connects to the server, and

sends requests based on the received signal. According to requests, the server would

return relevant introduction information back to the PDA.

This thesis provides us inspiration. First of all, the whole building could be divided

hierarchically. This method of mapping between practical building and data structure

would be of great help in designing algorithms for indoor navigation and indoor

locating. Secondly the reader, which could be PDAs or smartphones, receives certain

10

location information from a tag and subsequently receives tour guide information from

a server.

We consider the drawbacks of RFID tags as well: RFID technology is fairly

expensive(Ayre, 2012). First of all, RFID tags are required to be purchased and placed

with every item in the exhibition. If this thesis adopts this technology, considerable

amount of RFID tags are needed to be placed in exhibits and vertices in the building.

Secondly, upgrade is expensive. If contents of RFID tags are changed, developers must

use specific hardware to rewrite the RFID tags.

After reviewing and analyzing the technical solutions as described above, several major

points and weaknesses were identified:

Most smartphone tour guide applications do not cover the indoor exploration due

to the blocked GPS signal in indoor scenario.

Some applications prefer to download defined contents to smartphone for future

utilization due to the high expense of internet connection. However, with the

constantly decreasing charges of internet downloads, contents could be updated if

the application is context-aware.

The efficiency of the server needs to be considered. It is theoretically possible for

the server to provide detailed and precise tour guide service covering not just one

specific area, but the whole city or the whole country. There are mainly two

obstacles to be resolved to maintain normal operation, namely great number of

requests from clients and storing huge amount of information.

1.1.4 Smartphones and Cloud Computing

In contrast to traditional servers, cloud platform is elastic with changes to requirements.

Maintenance and administration of a collection of servers could be easily left to cloud

providers such as Google App Engine, Windows Azure or Amazon EC2. Similar to

consumption of electricity, the cloud provider would only charge companies when

resources are used. For example, cloud providers use measures such as the amount of

11

data transferred between the cloud and other hosts, and amount of storage utilized as a

basis to calculate charges for services. Before cloud computing, small companies had to

purchase enough servers to handle sudden avalanches of requests but the servers tended

to be idle most of the time. In this scenario, high budgets were required of small

companies and they also had to hire staff to maintain the normal operation of servers.

However, with the advent of cloud computing, small companies only have to pay more

when requests from clients are overwhelming i.e. as at peak demand time (Hansen,

Grønli, & Ghinea, 2012).

Since cloud computing is still quite new, there are very few research studies focused on

cloud platforms as the server of mobile clients. In New Zealand, there is still no

implemented technical solution that cloud computing server is used as the back-end

server for electronic tour guides. Nevertheless there is previous overseas research that

provides us inspiration. In a study, place tags which contained the location and

description of travel information were used (Delev, Gjorgjevik, & Madzarov, 2010). All

these tags were transferred from users’ smartphone to cloud storage. When other users

look for what they could enjoy at a specific location, the web browser could download

tags from cloud platforms. This client-cloud model serves as a prototype for the

implementation in this thesis. Cloud-based systems could also provide the basis of

Location Based Service(LBS) checked-in services (Bisio, Lavagetto, Marchese, &

Sciarrone, 2013). With respect to operation efficiency, research has shown that Google

App Engine, the cloud platform providing web application hosting services, could be

elastic when dealing with considerable amount of mobile requests (Bisio et al., 2013).

In this thesis, cloud computing will be utilized as the back-end server to support data

storage and logic calculation of electronic tour guide.

 Research Questions 1.2

From the introduction to temporary and past electronic tour guide systems discussed in

the previous sections, there are a few major deficiencies that have been identified:

- In most cases, indoor locating and navigation are not implemented. In some

12

specific scenarios, hardware cost is too high for implementation.

- Contents of the apps discussed in previous sections are predefined, and cannot

be updated as context changes.

- Servers encounter efficiency problems.

- The cloud computing platform can be a potential competent candidate to be the

server; there is no previously implemented tourism navigation model that uses

the cloud platform in New Zealand.

Thus, the research questions are:

Research question 1: How can smartphones guide tourists to travel in New Zealand, no

matter they are in outdoor or indoor environments?

Research question 2: How can we use the cloud computing platform in a navigation

application?

 Contributions 1.3

In this thesis, a prototype of indoor and outdoor tour guide system named NZ Tour

Navigation is proposed and developed.

In this research, first of all, detailed information of several buildings and tour attractions

is stored in the cloud computing platform, namely Google App Engine. The information

includes the structure of floors, tour attractions on certain floors, and general

introduction of buildings and outdoor landscape. The logic of navigation would be

implemented in the cloud server.

Once the server side is built, the mobile application NZ Tour Navigation is designed and

implemented as well. The smartphone platform used in this thesis is Android. In the app

Tour Navigation implemented in this thesis, the tourist will be able to get information

including local weather, general introduction of local city, general introduction of

nearby tour attractions, and indoor navigation information for tour attractions that can

be accessed indoors. The user can also post social network status updates through this

app.

13

 Overall Methodology 1.4

Constructive research is the methodology followed in this research. The major objective

of this research is to build a model that proves the practicability of our ideas. This is

exactly the meaning of constructive research which is concerned with designing

frameworks or technical progress (Crnkovic, 2010). Thus, several steps of constructive

method are followed:

- Form a question that has research potential.

- Have a general idea and understanding of relevant similar research.

- Post an innovative idea.

- Prove that idea is implementable.

- Analyze the applicability of implemented ideas

In this chapter, the problem has been forged. In the following chapter, the literature

review conducted will be discussed. Later, a prototype is designed, developed and

evaluated, and recommendations for future research are made.

14

Chapter 2 Literature Review

This chapter critically reviews theses and technical documents relevant to indoor and

outdoor navigation systems. Firstly, we critically review the literature about navigation

that helped us draw the research question from the strengths and limitations of relevant

literature. Next, the chapter introduces and analyses the utilization of QR Code scanning

in daily scenario and how this technique can be implemented through smartphone to

provide locating service. Later several theses about the Graph algorithm, to do with path

navigation, are considered and reviewed. Following this, we have a look at Google App

Engine and how to construct the server on the cloud to provide navigation and data

storage service to various clients. Finally, some factors about designing and

implementing an Android Phone app will be emphasized while reviewing Android

official documents.

15

2.1 Navigation

2.1.1 Indoor Navigation

Outdoor navigation technology is mature. With the help of GPS most of us have access

to exact location service (Montague, 2010). A GPS receiver is able to help outdoor

adventurers to reach destinations and return safely no matter they are hiking, fishing,

kayaking or mountain biking in the country (Hinch, 2010). Enterprises such as Google

and Apple have provided perfect and exact routing services in the outdoor environment.

For city residents, smartphone with GPS recommends them nearby living facilities and

instant traffic information according to their current location (Ibrahim & Ibrahim,

2010).

Compared with outdoor navigation, indoor navigation enjoys far less popularity

(Montague, 2010). GPS signal is mostly blocked within buildings. Exact location

navigation service provided by GPS is not available within buildings. In addition,

indoor environment is more complicated than the outdoor environment(Montague,

2010). Outdoor environment can be observed by the map, however as to the indoor

environment, often there are many storeys. Each storey contains corridors and rooms.

For example, in a vast hospital, patients are easily lost and may find it difficult to find

exits, entrances and elevators. In the following section, several main articles that are

related to indoor navigation are introduced.

2.1.2 Previous Indoor Navigation

In this section previous indoor navigation studies are critically reviewed. Their strengths

and drawbacks are identified to reach our research questions.

Micro-Electro-Mechanical Systems (MEMS) accelerometer and gyroscope sensors are

able to be used for indoor navigation (Iozan, Collin, Takala, & Rusu, 2011). The initial

focus is on how users move. Accelerometer sensors are used to determine how far the

user has moved. Peaks of data variation combined with the length of footstep are

counted to estimate the distance covered. Gyroscope angular rate data is used to

16

determine the direction users are heading for. This thesis informs us on how to use

low-cost infrastructure to direct users to navigate. However, there is no discussion about

how the decision is made to choose the route presented to users. If the user’s route is

short, exact calculation is not needed to inform users the correct route to navigate. Only

the start point and destination point are needed to be shown to the user to inform them

whether they are in correct route.

Another study discussed the utilization of magnetic field for navigation and locating

(Gozick, Subbu, Dantu, & Maeshiro, 2011). Magnetic field variation can be affected by

metal material within the building or human-made sources such as energy power system.

This research discovers that magnetic field of corridors and pillars within the building is

unique. Due to the unique magnetic field of corridors and pillars, a magnetic map can be

designed for users who wear magnetic sensors. However, the article only covers the

discussion of navigation of one storey. In the case of two adjacent storeys, interior

structure such as pillars and corridors may be similar and the magnetic fields are then

similar. However, the storey the user is on cannot be discovered.

Radio signals have also been used for locating and navigation (Yanying, Lo, &

Niemegeers, 2009). At first researchers distribute infrastructure such as WIFI hotpots

and RFID tags to transmit radio. A set of measurements of these radio signal are then

taken at different locations. Map of signal received angle, strength of signal and location

are stored. When the user detects signal at some sites, the user is able to know where he

or she is by comparing the three parameters angle, strength and location. Once the

location is known, shortest path algorithm is performed to calculate the shortest path for

the user. However this system needs wide-range distribution of hardware and frequent

update of the database of location record.

All the research discussed above require external signals to model the map, such as

magnetic field, radio frequency, RFID tag, and WIFI signal. Some researchers believe

that traditional map is a more straightforward navigation method (Link, Smith, Viol, &

Wehrle, 2012). The software system gains the indoor map of the building. Smartphone

17

which is held by the user has the accelerometer sensor. According to the variation of

accelerometer data, the smartphone calculates how many steps the user has walked and

in which direction the user is heading. Based on the original site of the user, the

smartphone displays the location the user is currently in. However, accelerometer

embedded in smartphones is not accurate enough and mistakes can accumulate but no

specific correction methods are discussed in this research for correcting current user

location state. As to the user, if they are looking for the path on the map but have the

wrong present location information, it cannot result in correct navigation route.

2.1.3 Navigation Problem

Having analyzed the articles discussed in the last section, several that require

consideration with relation to navigation are:

1. Infrastructure distribution. When using radio signals for locating users, research

suggests that certain hardware be deployed for locating service. The density of

the hardware needs to be high enough to locate the user accurately (Yanying, Lo,

& Niemegeers, 2009). However, there is a cost to wide-range distribution of

hardware.

2. Locating. The articles discussed do not provide an accurate and cheap technical

solution for indoor locating. Only wide-range distribution of hardware is

considered in these articles (Gozick, Subbu, Dantu, & Maeshiro, 2011).

3. Navigation. The algorithm that provides navigation service is not clearly

discussed. Only general ideas are covered in these articles.

With these three major points considered, further review of literature was conducted to

discover inspiration and other experiences.

2.2 QR Code

2.2.1 Overview

As discussed in the previous chapter, RFID tags and GPS which are used as technical

solutions for indoor locating do have their own disadvantages. High expense of

18

implementation and inaccuracy make them not appropriate for deployment of

navigation system on a large scale.

In this thesis, QR Codes are used to gain location by scanning the QR Code. In this

section, we review what a QR Code is, its advantages, how it has been used in previous

cases and how these cases inspire our thesis.

2.2.2 Definition

QR code, which stands for Quick Responsive code, is a two-dimensional machine

readable barcode that contains information about the object it attaches to (Lin, Luo, &

Chen, 2013). Although purely consisting of black and white squares, QR code can

contain considerable amount of data and support fast reading. What is more, scanning

the QR code can be conducted at various angles. Compared with other techniques such

as barcode which requires that barcode should be placed directly over the scanner, QR

code can be scanned in various directions in various angles.

The procedures to generate a QR code are not complicated (Lamb & Johnson, 2013).

Significant amount of QR code generating tools are able to be accessed. Taking QR

code generating website Unitag as an example, users input their text information in the

first step. After this, they specify the kind of color, style of QR code, and embellish with

photo personalized by the user. In the final step, the picture of QR code can be

downloaded.

Since the QR code can be generated with ease and at low cost, it is widely utilized in

different scenarios. In a library, QR code is widely deployed to link the printed

documents with electronic data (Andrew, 2011)where the QR code provides the link

from printed journal articles to electronic journal. For environment friendly use, the QR

code provides the electronic alternative PDF format to physical printed books. For

further understanding of certain printed books, QR code can provide links to videos

uploaded on a website. As can be seen from these examples, the QR code contains

valuable information about the object the QR code attaches to.

19

2.2.3 QR Code for navigation

QR code has not been used for tour navigation before. However, similar cases can

inspire our research.

In one education project, enthusiasm for physical exercise is triggered through scanning

QR code (Shumack, Reilly, & Chamberlain, 2013). Students were instructed to scan the

QR code at the first site to read the navigation information to the second site. By

scanning the QR code when they reach the next site, points gained and how to go to the

next site could be read. The student who gained the most points in the least time won

the trophy.

As can be seen from the research above, the QR code could contain specific information

including geo-location. What is most important, compared with RFID Tag and other

techniques, QR code is a low expense and available for deployment at large scale. Case

mentioned above has indicated that QR code is spa good low-cost candidate for use in a

navigation application to indicate location.

In this thesis, the QR code encrypts the vertex which models the indoor structure. How

to model the indoor structure using vertex is introduced in the next section.

2.3 Shortest Path

2.3.1 Overview

After reviewing documents of locating, the algorithms to show navigation from one

place to another place are reviewed in this section. The algorithm question of shortest

path is a heated topic in computer science research area. Since the graph which is the

base of shortest path question can simulate various practical scenarios, issues of shortest

path have been deeply researched to solve different kinds of practical problems. In this

section, other technical implementations based on the graph are reviewed. In the next

section, the basic conception of graph which is utilized in this thesis is introduced.

20

The most widely researched question is the discovery the shortest transportation path

from source site to destination site within a city (Joshi, Sridhar, & Chandrasekharan,

1993). In their paper routes of the city were mapped as vertices of the graph. How much

time is spent to cover the distance of a route was mapped as the weight of the edge. To

calculate the shortest transportation path is to calculate the shortest path from source

vertex to destination vertex.

In some scenarios, various types of transportation including tubes, buses and flights are

considered as well. As a result, shortest path problem through different layers of

transportation is the other research topic (Zhiyuan & Yan, 2009). In the first step, the

authors overlaid multiple layers and rebuilt the topological relationship according to the

scan line. Based on this relationship, the authors designed the algorithm adopting heap

and discovered an innovative algorithm to reduce complexity. In the final stage, it was

proved that the algorithm can be efficiently adapted to solve the shortest path problem

with multiple layers.

More advanced and complicated situations such as how to direct a robot to navigate

through obstacles (Golda, Aridha, & Elakkiya, 2009) is discussed by researchers as well.

In a static environment filled with obstacles, a two-dimensional array is built to model

the environment. The whole environment is divided into cells. Each cell is detailed

whether there is an obstacle such as a wall. To travel from the source cell to the

destination cell, the robot only chooses the adjacent cells without obstacles. If it

encounters an obstacle on the path, it retreats to the last cell to search for another cell to

navigate to until it reaches the destination cell. In a dynamic situation, the robot uses

sensors to identify and track changing obstacles, and continuously change its

two-dimensional array.

Another practical implementation of shortest path navigation is in directing blind people

to go through the indoors of a building (Alghamdi, Van Schyndel, & Alahmadi, 2013).

Researchers use RFID tags distributed in the building to identify the location

21

information. The structure of the building is modelled. Blind people who wear RFID

reader receive RFID signals and know their exact location. According to the source

RFID tag location and destination RFID tag location, shortest path navigation algorithm

is conducted to calculate the shortest path. Thus the blind people are directed.

In the next section, some basic concepts about shortest path question will be introduced.

Later, how to simulate the indoor structure is detailed. Finally, to make the algorithm

more efficient, some theses are reviewed to inspire our thesis.

2.3.2 Basic Conceptions

Although graph is widely utilized in other comprehensive scenarios, this thesis just

adapts the basic concept of graph.Only the concepts that contribute to this thesis are

reviewed in this section.

To begin with, basic conceptions of graphs is introduced. A graph G=(V,E) consists of

the set V of vertices and the set E of edges (Weiss, 2007). Sometimes weight or cost is

used to describe the edge. In practical scenario, the cost of the path sometimes stands

for how much time is consumed to cover the distance or how much money has to be

paid for a vehicle to travel the route. The path is a series of vertices w1, w2, w3, … wn

where (wn, wn+1) belongs to the same edge.

The shortest path question is to discover how to travel from one vertex to another vertex

while the least cost is spent. Since in this thesis, the length of corridor does not vary

greatly, e.g. from 10 meters to 100 meters, the shortest path of this thesis is considered

as unweighted path length from the source site to destination site. The cost of each edge

is considered to be the same.

To discover the shortest path from the source vertex to other vertices, there are mainly

three attributes of each vertex to be considered, namely Known (whether this vertex is

known or not), D (the distance from the source vertex to this vertex), as well as P (the

22

path from the source vertex to this vertex) (Weiss, 2007).

At the beginning, since all the vertices except for the source vertex are unknown and

unreachable, the Known=F (false), D=INFINITY and the P=null. Starting from the start

site, this algorithm keeps searching for the adjacent vertices of the vertex which is the

last one of the shortest path. The algorithm to discover the shortest path is illustrated as

follows:

At first, all the vertices except the start vertex are initialized. Three attributes of every

vertex is initialized in preparation for calculating the shortest path. In the second step,

starting from the start site, every vertex which is adjacent will be discovered and the

path from the start to this vertex is recorded. Starting from these adjacent vertices, the

algorithm will be conducted again until all the vertices in the graph are discovered.

23

Figure 2.1 The shortest path algorithm

Source: (Weiss, 2007)

However after observation of this algorithm we find that the time complexity is O(|V|²).

The reason for this situation is that even if a vertex has been discovered it can

potentially be scanned again.

Therefore in the improved algorithm, a queue is established to contain the discovered

vertices. In this situation, the discovered vertex will not be scanned again:

Void function (Vertex s) { //s stands for the source vertex

 For every Vertex v {

 // as to each vertex, initialize the three attributes

 v.D=INTINITY;

 v.Known=F;

 v.P=null;

 }

 s.D=0; // the distance of source vertex to itself is 0

 for (int currDist=0; currDist<number of vertices; currDist++){

 for every Vertex v

 if(v.Known==F&& v.D ==currDist){

 v.Known=T; //the vertex has been discovered

 for every vertex w which is adjacent to v{

 if (w. D==INIFINITY){

 w.D=currDist+1;

 w.Path=v;

 }

}

}

}

}

24

Figure 2.2 The improved shortest path algorithm (Weiss, 2007)

2.3.3 Modeling the building structure

A typical method to model indoor building structure is to consider each junction as a

vertex. The definition of junction includes the junction between a room and a corridor,

the junction between two corridors and the junction between a corridor and a staircase

(Yu, Li, Liu, & Ning, 2012).

As can be seen from Figure 2.3, S1006, S1002 are vertices, being the junction between

room and corridor; s1003 is a vertex, being the junction between two corridors. The

other type of junction is the room entrance such as s111 and s110 in Figure 2.4.

Void function (Vertex s) { //s stands for the source vertex

 Establish a Queue q to contain vertices;

 For each Vertex v, set vertex’s distance is INFINIT;

 For start vertex s, the distance is 0;

 Put the start vertex s into queue q;

 While(!q.is Empty ()){

 Heap (), get the vertex v from the head;

 For each vertex w adjacent to v {

If (w.dist==INFINITY){

 w.dist=v.dist+1;

 w.path=v;

 q.enque(w);

}

}

}

}

25

Figure 2.3 Indoor building map (Yu et al., 2012)

The model of this indoor structure is shown in Figure 2.4. Once the graph of vertices is

established, the algorithm to discover the shortest path between vertices could be

utilized. In this research, as discussed in the last section on QR code, the QR code

which encrypts the vertex number is attached to the location. Once the user of the

mobile app scans the QR code, the app is informed about which specific vertex the user

is at.

Figure 2.4 Indoor building model

Source:(Yu et al., 2012)

For more efficient computing performance, improved algorithms pay more attention to

26

vertices that contribute more to path searching, called critical vertices (Yu et al., 2012).

Using Figure 2.4 model as example, once the user reaches S1006, it is highly possible

that the user will find no difficulty to discover the vertex S1005 and S1004 since these

three vertices are in the same corridor. Since S1006 contributes more to find the path,

S1006 is referenced as a critical vertex. Critical vertex is the vertex that connects two

corridors or two storeys. Shortest path searching is not conducted on normal vertices

any more but on the critical vertices. In Figure 2.4, the critical vertices are s1006, s1003

and 1003. Similarly, the shortest path searching is not conducted on normal edges any

more, but on the critical edge. Critical edge is the edge to connect two critical vertices.

The critical graph is the set (V, E) where V is the set of critical vertices and E is the set

of critical edges.

According to the comparison experiment, since the vertices scope has been narrowed

down, the algorithm performing on critical graph is much more efficient than the same

algorithm performing on the graph using all vertices.

2.3.4 Improved Algorithm

To improve the performance of shortest path searching, not only the model of the graph

can be improved, methods can be various according to the practical scenarios. After

critically reviewing certain amount of literature, there are mainly two methods to

improve the algorithm in this thesis.

First, since the logic to provide shortest path will be located on the server, if significant

amount of users request for the shortest path simultaneously, the demand on

computational resources would be intense. Thus, the shortest path is pre-computed and

stored on the server (Yu et al., 2012). O(n²) space is consumed but time is saved.

Second, sub-graphs are utilized to improve the efficiency of the shortest path search

algorithm, resulting in an improved algorithm (Wu, Xu, Hu, & Yang, 2003). For

example, in an urban city, to calculate the shortest path with many streets and

motorways would have low efficiency. As a result, streets can be divided into different

27

zones. First at higher level graph, the shortest path is calculated between source zone

and destination zone. In the second step, the shortest path between source vertex and

exit vertex within source zone, and the shortest path between entrance vertex and

destination vertex within destination zone are calculated. The calculation tasks can be

conducted simultaneously.

As to the indoor building in this thesis, this idea also inspires us. Computing the shortest

path is not necessary to be conducted on the whole graph containing all the storeys.

(a) The Whole Graph

(b) Partition of Graph

(c) Higher level graph

Figure 2.5 Sub-graphs of the whole building

28

As Figure 2.5 illustrates, each storey could be modeled as a sub-graph. The entrance

vertex and exit vertex of each sub-graph could be staircase and lift. The whole storey

consists of nine vertices from v1 to v9. Vertices v1, v2, v3 and v4 are in a sub-graph v1’.

Vertices v5, v6 and v7 are in a sub-graph v2’. The other three vertices are in the last

sub-graph v3’.

This thesis will divide the whole building into storeys. Each storey is modeled as a

graph. Within two adjacent storeys, two adjacent graphs are connected through two

vertices where each vertex belongs to each graph. This vertex could be the lift or the

entrance or the exit of each storey. In each storey, only the critical vertices are modeled.

In summary, this section discussed how critical vertices will provide improved

performance for the shortest path algorithm. In addition, it was decided to pre compute

and store the shortest path in order to mitigate demand on the server.

2.4 Cloud Server

After reviewing how to provide efficient locating and navigation, in this section we

review theses and official documents about the cloud server which contains the locating

and navigation service, and stores the location information.

2.4.1 Overview

There are various reasons why cloud computing platforms are increasingly popular as

the back-end server of front-end mobile applications. First of all, the overwhelming

expense of implementing network devices to cover requests from metropolitans or

countries is an important factor for small companies to consider (Bisio et al., 2013).

Handling a large number of requests from clients requires setting up robust servers,

especially at peak times. However, once requests are not at peak, resources requested of

a server are trivial. Cloud computing platform enables computing resources to be used

when the resources are needed. Similar to electricity, when devices need more electricity,

more electricity is consumed. When more computing resource is needed, cloud

computing platform provides more storage and processors to conduct computing tasks.

29

Secondly, the use of cloud servers with smartphones, which have limited resources, is

advantageous. Smartphones lack the battery capacity to support consistent computing

when compared with a computer or laptop. In addition, due to insufficient computing

capabilities smartphones are not suitable for conducting computing tasks solely (Delev

et al., 2010). However, with Cloud computing servers to conduct computing tasks,

smartphones can connect with networks and just play the role of interface between

servers and users.

As a result, there has been some research into designing the computing model

consisting of cloud computing server and smartphone clients (Jarle, Tor-Morten, &

Gheorghita, 2012). Push notification is one of the communication methods between

servers and Android smartphone. Jarle et al (2012) tested the stability, response time and

energy consumption within four most popular push notifications: C2DM, XMPP, Xtify

and Urban Airship. Google App Engine played the role of server in the benchmark test

to send push notification to smartphones. This previous research has proved that Google

App Engine has the potential to be the back-end server for smartphones.

Delev et. al. (2010) used smartphone clients to retrieve and upload certain amount of

information for sharing while working to promote tourism. They researched on how to

use cloud server to store place tags sent by smartphones. Place tags contain brief

introduction and rating about specific sites. In addition, Cloud server has also been used

to help control activities at a tourism site. In a study, when tourists carrying smartphones

entered certain tour sites, the smartphone application registered temporarily to the cloud

server. The server monitors the number of registrations and when the server discovers

that the number of registrations is overwhelming, a push notification is sent to the

tourists to warn that certain tourist sites are crowed and it would be better for them to

visit later.

In another study, the cloud server pushes specific advertisement to smartphone clients

based on the analysis of information gathered from the smartphones (Durresi, Luarasi,

Baholli, & Durresi, 2013).

30

As can be seen from the above research, cloud server runs as a data aggregator and

service provider. Smartphones run as data provider and service receiver. In this thesis,

smartphones provide their location no matter they are indoor or outdoor. Based on this

location, the cloud server can provide location information and navigation service.

2.4.2 Google App Engine

Google App Engine is a host which enables programmers to build and run web

applications on it (Malawski et al., 2013). With various cloud computing platforms, this

research chooses Google App Engine as the backend server. As a cloud computing

platform, Google App Engine scales as requests and storage requirements change.

Compared with other cloud computing platforms such as Windows Azure and Amazon

EC2, there are several major advantages (Prodan, Sperk, & Ostermann, 2012):

1. Free to deploy web applications. While Windows Azure and Amazon EC2

require certain amount of fee to deploy servers on cloud computing platform, it

is free to deploy web applications on Google App Engine if requests or data

storage is under certain limitation.

2. Convenient to deploy web applications. While Windows Azure and Amazon

EC2 require configuring virtual machine to conduct computing tasks, with

Google App Engine developers only need to design servlet and certain APIs to

design the web server logic.

3. Multiple programming languages. To support developers deploy their logic on

the cloud computing server, Google App Engine enables multiple programming

languages to design and implement web applications, including PHP, Python,

Java and Go.

2.4.3 Setting up the Cloud Server

To launch the server on cloud computing service, there are a few procedures that need to

be followed (Jordan & Greyling, 2011).

1. Initialization. The initialization step is to register the domain of the server. On

31

control panel, the developer registers the domain which enables access to

smartphone application.

2. Web project. Once registration is finished, the whole web application is set up

ready to be uploaded to the cloud server.

3. Designing the services in the servlets. There is a web.xml file in the project

which can be used to configure URL for Http access. After designing the tasks

that are finished in the servlet page, such as providing navigation or introduction,

certain URL and servlet pages are bound.

Next, design the stored data structure. While designing the data structure, Java Data

Objects (JDO) is utilized. As to Google App engine, JDO is a defined typical interface

for storing objects in a database. Using this interface, the third-party clients are able to

annotate Java objects, retrieve objects from Google Big Table using queries and interact

with Google Big table with transactions. In this thesis, JDO is used for object mapping

from class to data table. What is more, JDO processes how to set up the table in data

store as well.

2.4.4 Servlet

In general, web application designers firstly register a host for a web application. Within

the web application, servlets provide the host with the logic for conducting computing

tasks and storing data tasks. As to conducting computing tasks, on receiving requests

from mobile clients, computing tasks are conducted and results are returned. As to

storing data, how to store data through JDO in JSON format is also specified by Servlet.

All the data interaction, request and response are performed through HTTP protocol

between mobile client and servlet.

In Google App Engine, it is the servlet’s responsibility to provide the service (Google,

2014b). Through Http request, the servlet, which runs the logic to calculate the result,

returns the result back to the client. After generating the writer from the Http response,

the servlet utilizes the writer to output the result. The model of the servlet is illustrated

as follows:

32

Figure 2.6 Servlet model

(Google, 2014b)

2.4.5 Data Structure

The whole system structure design follows Model-View-Controller (MVC) principle.

While processing data, for the convenience of modelling from objects in real world to

data in Google Big Table, data is firstly modelled as object (Correa & Ricaurte, 2014).

Later through JDO mapping from object to table, data is transferred into records of the

table (Leone & Chen, 2007). JDO mapping automatically enables object being

transferred to rows in Google Big Table. While retrieving records from tables using

queries, retrieved records are automatically transferred into object, and the columns in

each record are transferred into variables of objects. As to the bridge JDO, the candidate

data type should be JSON object.

2.4.6 JSON

For Google App Engine, the format for transferring data to clients is mainly JSON,

namely JavaScript Object Notification (DarrelInce, 2010). As to JSON, its syntax does

not require the developer to define a method to generate a class. Instead, its syntax

enables it to generate a JavaScript Object (Severance, 2012). Thanks to this, JSON

object data is easily defined and transferred. Thus, it is widely adopted in internet

transfer between clients and servers.

33

For Example, to create a person object with attributes name and gender:

Figure 2.7 JSON format

Compared with JSON’s most competent counterpart XML, JSON has three advantages

including being light weight, able to support multiple programming languages, and is

more understandable (Severance, 2012). Increasingly nowadays, JSON is chosen to

transfer data, and not XML, because of these three reasons.

2.5 Android

2.5.1 Overview

As an open source smartphone operating system, Android has attracted considerable

attention since its advent. The character of open source makes it compatible for various

devices especially smartphones. On one hand, being originally from Google makes it

perfectly suitable to use with Google App Engine. Google provides developing toolkit

specifically for Android connecting Google App Engine system model. Developing,

debugging and testing are convenient. On the other hand, since this operating system

could be launched on various devices, fragmentation of devices is a barrier that needs to

be overcome (Song, Kim, Kim, Lim, & Kim, 2014). In this section, several key factors

of designing and implementing an Android smartphone application will be discussed.

These key factors include the http connection between a mobile device and Google App

Engine, utilization of google map, and how to download and cache pictures efficiently.

2.5.2 Http Connection

As discussed in the last section, Google App Engine plays the role of data aggregator

and service provider. As the party who asks for data and service, the smartphone needs

to constantly connect with the data server. However, the data transaction between

Google App Engine and smartphones may be highly time-consuming. In this section,

var p={

name:’yeeku’,

gender:’male’

};

34

the long-term downloading tasks will be discussed.

Since the http connection with data server may consume a large amount of computing

resources and time, it is not a good idea to locate tasks such as the downloading of

pictures or videos in the main thread as this may cause the smartphone to be

non-responsive (Holleman, 2012). If the downloading task is located in the main thread,

considerable amount of time may be spent waiting for responses from the server. , Also,

during this time, main thread is not able to interact with any user interface input.

Downloading tasks should be conducted within an asynchronous task. Asynchronous

task should be utilized for time-consuming tasks. Once the asynchronous task has been

finished, it sends a notification to the main thread. After the main thread receives the

notification, some change to user interface happens, for example, an alert message will

pop up a reminder to user. The whole mechanism is illustrated in Figure 2.8.

 Send the notification

Generate

Async Task

Figure 2.8 Download mechanism

Within the asynchronous task, Apache HttpComponents are used for maintaining

internet connection as they performs excellently at creating and maintaining low level

Java components concentrated on HTTP and associated protocol. Firstly, the application

creates an Http client to generate an Http Get request. If the response is successful, then

Main Thread

1. generate the download async task

2. UI Hint for the user downloading is being conducted

Async Task

Conducting download task, once finished, send the

notification to main thread

35

the JSON entity which contains the result can be gained and deciphered.

2.5.3 Google Map

The smartphone application being researched in this thesis is required to present tour

attractions on a map. In this section, a review of how to display this information on the

google map is discussed.

Map view of smartphone applications uses polygons to represent buildings or other

objects on the map. In Google map, IOS map or other map tool, a site can be displayed

as polygon, such as a pin. A few steps need to be executed before Google Map can be

utilized for displaying polygons (Google, 2014a):

1. Download and configure the Google Service SDK.

2. Obtain an API Key specific for the application

3. Include the required setting in application

4. Include the map view in the application

Once these steps have been completed, the data can be presented on the map view

through polygon. Polygon is the painted object which is drawn on the map view.

2.5.4 Image Download

As downloading images from Google App Engine is required to show the path

navigation, there are some measures that should be considered to ensure images are

downloaded efficiently (Android, 2014).

The first consideration is to load bitmap efficiently. Image sizes and shapes vary. In a lot

of scenarios they are bigger than the restriction for a traditional application user

interface. For instance, in a gallery which shows many photos the images are in lower

resolution while the camera is in higher resolution. To load the images from Google App

Engine Server, firstly the app has to be informed about what the resolution of images is.

Secondly, there are three major measure standards to decide whether the bitmap should

36

be compressed to load in memory. The first measure standard is how much memory is

needed to store the image in memory. The second one is to calculate how much memory

is available to be committed, in order to avoid memory exceed exceptions. The last one

is user interface’s screen size and resolution. After deciding whether an image should be

compressed, it can be decided whether the image is to be decoded or not.

The second consideration is whether to launch another thread to download images. Just

as discussed in the last section, since downloading images consumes time and

computing resources, locating this task in the main thread will undoubtedly block the

main thread. Thus, this task will be put into an asynchronous task.

The third consideration is whether to cache the image. Loading one image in an image

view is relatively straight forward since one UI component would not create a huge

effect on memory. However, we need to consider how to make the application perform

efficiently when loading an array of pictures that are needed to indicate the navigation

path. While the scroll view is scrolled down and the image in the image view vanishes

from the screen, the smartphone operating system automatically collects the image and

UI component as garbage. However, when the user scrolls down and up the images,

images are recreated again and again. To make the whole application operate smoothly,

memory cache and disk cache should be utilized.

2.6 Summary

In summary, the literature review is the basis for implementing the navigation system.

QR code, attached on vertices in a building, ciphers the location information. Users use

the smartphone to scan QR codes - to know where they are exactly and where they wish

to go to certain locations. The smartphone gains the location through the scanning of the

QR code. QR code reader within the application deciphers the location information of

QR code. In the second step, the application sends requests to Google App Engine

through HTTP connection. Once a servlet in Google App Engine receives the request,

logic within it utilizes the shortest path algorithm to calculate the shortest path, retrieves

the relevant data such as URLs of pictures to show the shortest navigation path from the

37

Google big table, and return the result in JSON format. Once the application receives

the result, it downloads certain images for efficient navigation.

38

Chapter 3 Methodology

According to constructive research method, the system construction starts with certain

specific needs which are illustrated as requirements. In the first chapter, a research

question is detailed. Later through literature review of relevant theses and official

technical documents, we gain a more sophisticated understanding of the thesis topic and

about how to construct the whole system. In the last step, a prototype is developed. To

finish these procedures, the whole software lifecycle is run through, including gaining

system requirements, designing the structure of system, implementing the whole system

and software system evaluation.

39

3.1 Gaining Software Requirement

Illustrating and discovering major requirements of the system is one of the major

challenges in this thesis. In this thesis, the requirements are illustrated through human

natural language and use case (Binkley, Feild, Lawrie, & Pighin, 2009).

Since human natural language is utilized by normal human beings to communicate with

each other every day, there are few barriers for a human to understand the contents of

natural language (Santiago Júnior & Vijaykumar, 2012), compared with other

communication channels. To illustrate the software requirements through natural human

language is the best alternative solution especially for those without software

development background. To narrow down the impreciseness, usually software

requirements are illustrated in the following format:

Table 3.1 Requirement Format

Entity Should Do

Parties involved in the

system

Could / Will Actions

The ‘Entity’ stands for any parties that are involved in the whole software system. Since

requirements illustrate what functions should be finished, ’Do’ stands for what actions

the entity will conduct.

Once the format for the software requirement is defined, then requirements of a

software system can be defined. A software system has three main requirement

categories (Souza, Lapouchnian, Angelopoulos, & Mylopoulos, 2013) which are

requirements on engineering, qualification and delivery. The kind of requirements in the

first category, requirements on engineering are closely related with software itself. For

example, what the user interface should represent and what functions the software

should have. These are also called functional requirements. As to the other two types of

requirements namely requirements on qualification and delivery, they are related more

to product standard. Such requirements are non-functional. To meet requirements and be

effective, quality of the software should be guaranteed and bugs of software should be

40

controlled to a limited amount. For example, a quality requirement may be - software is

required to respond to the user within ten seconds.

Although human natural language is much more understandable to normal human

beings, there are deficiencies that cannot be neglected. First of all, natural language is

not precise enough. Different from statistics or graph, text description does not describe

factors in detail. Secondly, misunderstanding is another problem. With the same natural

language description of the software requirements, understanding about requirements

vary from person to person. Due to its inherent disadvantages, natural human language

is only utilized for defining the high-level and general requirements.

To improve deficiencies of natural human language, use case analysis is adopted

(Kanyaru & Phalp, 2009). Use case analysis defines the whole system as an isolated

entity. Use case analysis can be constructed through several major steps.

First of all, the boundary of the whole software system is defined. The software

requirements can be illustrated as interaction between external entities and the software

system. Thus, the boundary needs to be detailed to tell whether a party is involved in the

software system or is part of external parties.

Secondly, the actors that link external parties and software system are defined. Actors

represent interaction between external entities and software system. For example as in

Figure 3.1, if the user asks for the navigation path from specific start site to destination

site, the actor in this scenario is the request.

41

Figure 3.1 Actor

Thirdly, specify each actor in use case scenario. The actor just describes the software

requirement in general and abstraction to a certain extent. The use case scenario details

each procedure and background for an actor.

Finally all these factors mentioned above are included in the UML graph.

In general, use case analysis requires readers to have software development background

to illustrate the software requirements. However, the use case descriptions are more

precise and detailed. As to human natural language, even normal human beings without

software development background are able to understand the content. Nevertheless, due

to the inherent characters of the natural language, sometimes the meaning of software

requirements cannot be expressed precisely.

3.2 Methodology for System Design

Our navigation system consists of two major parts. The client party is the Android

smartphone application which can be accessed by the user. The server party is located

on the Google App Engine cloud server. In this thesis, MVC (Model-View-Controller)

is adopted to design the whole software system. With regard to deploying servers on the

Google App Engine, there is no interface to present the data. Only data models, business

models and controllers are stored on the server. The smartphone application plays the

role of view in the whole system.

The data model in this system stores the data of building structure. All the data is stored

in Google Big Table. Apart from the statistics of building structure, the information of

general description of cities and buildings within cities are stored in Google Big Table

as well.

The business model is located in the project repository. At first it takes all the data of

vertices in every storey. After calculating the shortest path consisting of different

42

vertices, it returns the result. Apart from returning shortest navigation path within

indoor building, the business model also returns the general introduction data of nearby

buildings and city where the current user is, according to specific requests from user’s

mobile application.

The controller is located in servlets. Once the mobile application sends Http request to

the server containing the parameters of vertex of start point and the destination point,

the controller executes the business model. Once the business model returns the result,

the controller transfers the result back to smartphone application, namely the view in the

whole structure.

As mentioned earlier, the view in the whole structure is the smartphone application. The

smartphone application sends requests to the server’s servlet, namely the party of

controller. Once the controller gains the result of a group of navigation pictures’ URL, it

returns these results to the view namely the smartphone application.

3.3 Method of Data Acquisition and Storage

There are mainly four major types of data which are designed and implemented in the

Google Data Big Table. The first type of data is City General Description which

contains the general introduction of city, including information about economy, history,

geography and people. The second type of data is the Building General Description,

which contains the latitude, longitude, building name, general description, images of the

building and video of the building. Building data represent actual buildings within a city.

The third type of data is the vertices within the building. The fourth type is the exhibited

objects within the building, which are near vertices.

City General Description provides the first glimpse of a city to visitors and makes them

familiar with the city. In the software system developed in this thesis, the app Tour

Navigation will be informed of the current location first, and then the location is sent to

the server. Later once the google app engine namely the server gets the location, it

returns the description information back to the app Tour Navigation. In this thesis, firstly,

43

information is collected about economy, history, geography and people of the city. The

method of collecting information includes searching through Wikipedia, related tourism

journals and books. After getting related information, all this information is stored in the

table of Google App Engine. To make presentation of information to app users more

vivid, not only text, but pictures and videos are included as well. When talking about

pictures, only URLs of pictures are stored in the table. The picture itself is stored in the

source code repository as resources. When talking about videos, a similar approach is

used. Due to the reason that Google App Engine does not support live stream video,

only URLs of videos are stored in the table. Videos are uploaded to YouTube or stored

in the data source code repository as resources.

As to how to construct the second type of data, General Building description,

information about the building is collected through reliable channels. Once the

information is collected, it is stored in the table. Information includes pictures, video

and text description. Apart from these, longitude and latitude are stored as well.

The third type of data is the most important type of data for the Tour Navigation

software system. The vertices of each building are the basis of providing navigation

service. For each vertex, there is an ID which can indicate its universal identity. Apart

from the universal identity, there are the identities of eight adjacent vertices as well,

which indicates relation between this vertex and the eight vertices adjacent to itself.

There are eight because there are eight directions, namely south, north, east, west and

northeast, southwest, southeast and northwest. In addition to eight identities, to show

how to go through certain paths, pictures of paths are stored as well. Eight picture URLs

are stored. These eight pictures show the first point view of eight directions while on the

vertex.

The fourth type of data is the information about the exhibited objects. Exhibited objects

are objects worth seeing within a building. Similar with the first and second type of data,

text description and URLs of videos and pictures are stored. Apart from this information,

in order for users to navigate from one place in the building to where the exhibited

44

objects are located, the exhibited object has a location ID to specify its vertex.

3.4 Method of Testing

Testing on the system is to ensure whether the system is performing on requests and

performing efficiently. Its mission is to discover bugs which may potentially cause the

system to crash or end with an unexpected result. To discover the bugs there are mainly

three types of testing method utilized in this thesis to ensure the whole software system

performs correctly.

The first type of testing is method testing (Walter & Just, 2013). Method testing is the

basis of testing the whole system since the whole software system consists of various

methods. To detect the methods, black box or white box testing is utilized to find three

major errors (Krishna Mohan, Verma, Srividya, & Papic, 2010):

1. Syntax Error. If with IDE, these kinds of errors can be detected during coding.

2. Function Error. The method may seem well designed at first glance, but bugs

that cause errors may be present. For example, when input parameters have

values near the boundary or out of boundary.

3. Design Fault. The initial idea on which the method is planned for

implementation is wrong. This kind of error is mostly hard to detect compared

with two previous errors. This kind of error does not come from syntax error or

inherited error but from initial design. Thus, this type of error has to be checked

through general prospect. After implementing functions, functions are required

to be checked whether they have met requirements or not.

The second type of testing is module testing(Walter & Just, 2013). After ensuring each

method performs correctly, the next procedure is to ensure each module performs

correctly. Ensuring each method to perform correctly cannot guarantee each module

perform correctly. Sometimes although the method can perform correctly by itself, the

conflict created by input or output parameters within two methods may leads to the

collapse of the module. The module has to be tested as a whole.

45

The last type is to system testing (Walter & Just, 2013). System testing always involves

testing for bottleneck during extreme workload. For example, HP LoadRunner can

record scripts of action conducted at the website. HP LoadRunner launches hundreds or

thousands of requests simultaneously to test whether the system will crash or not. In this

thesis, since the system is hosted in the Google App Engine, simultaneous requests

could be launched through pressure testing tools. At the same time, observation is

conducted on the console of Google App Engine to check whether there is a bottleneck

within the software system.

The objective of this thesis is to design a software model and implement it. We will

focus on module testing in this thesis to ensure the system can run smoothly without

crucial defects or bugs. Since hundreds of methods are programmed to support this

thesis, method testing is not conducted given that it consumes considerable amount of

time while time to finish this thesis is limited. System testing to find the bottleneck of

the software system, if one exists, also requires programming scripts and huge

experiment time. In the future, these two types of testing will need to be done to

discover whether there are potential issues in this software system. At this stage, we

admit the lack of these two types of testing as a limitation of this thesis.

The next chapter discusses software requirements for the Tour Navigation system and

application.

46

Chapter 4 Software Requirements Detail

Detailing software requirements is the initial step of constructing the whole software

system. Without requirements, the goal is unclear and the construction may be off track.

In this chapter, requirements of the software system are defined through human natural

language and use cases. As mentioned in the previous chapter; these two methods do

have their own deficiencies but are able to complement each other to produce an

effective system.

47

4.1 Requirements detailed by Natural Language

The general requirement of the software is:

By using Tour Navigation provided by this system, a user should be able to discover her

or his current location within a building by scanning the QR code attached within the

building, or through GPS signal when outdoors. In addition, a user should be able to get

related tour information according to her or his current location as well.

As mentioned in chapter three, requirements can be defined in the format of “who

should do something”. Requirements, defined in this format should detail contents in

following categories:

1. Requirements of user interface

2. Requirements of capability

3. Requirements of data

4. Requirements of quality

5. Requirements of constrains

With regard to requirements of user interface, requirements are listed as following:

1. The mobile app should display the weather information of current city.

2. The mobile app should indicate which city the user is currently in.

3. The mobile app should display the general introduction of the city using a user

interface similar to that of Flipboard
1
 to be attractive to users. Contents of

introduction include text, pictures and videos.

4. The mobile app should display the nearby tour attraction buildings on the map.

5. The mobile app should display the introduction of the tour attraction buildings

through gallery, video and text documents.

 5a. Gallery should presents four pictures of the building.

 5b. Video should present video introduction.

 5c. Text should present brief text introduction.

6. Once the user is in the building, the mobile app should be able to display

1
 https://flipboard.com

48

pictures for navigation path.

7. The mobile app should provide the camera interface for scanning the QR code.

With regard to requirements of software system capabilities, requirements are listed as

following:

1. The software system should be capable of updating weather information through

Yahoo API.

2. The software system should be able to store introduction information of cities

and provide the introduction information back to the mobile app.

3. The software system should be able to store the location and general

introduction of the tour attractions. The contents of introduction include pictures,

videos and text. These contents should be delivered back to the phone.

4. The software system should be able to store the structure of storeys of buildings

and provide navigation service within these buildings.

5. The software system should be able to provide the introduction to the exhibited

objects within buildings.

With regard to requirements of data format, requirements are listed as follows:

1. Images should be in JPG format.

2. Images should be stored in the project source repository. Once the source

repository is uploaded to the cloud server, images can be reached through URL.

URLs of pictures are stored in Google App Engine’s Big Table.

3. Videos should be uploaded on to YouTube. URL of videos should be stored in

Google App Engine’s Big Table.

4. URL of contents of general introduction, including images and videos, and text

should be stored in Google App Engine’s Big Table.

With regard to requirements of design constraints, requirements are listed as follows:

1. The development should be conducted using the free cloud computing platform

Google App Engine.

2. The testing should be conducted through inexpensive android devices.

49

With regard to requirements on quality, requirements are listed as follows:

1. The time duration between sending requests from mobile app and getting the

response from cloud server should be within ten seconds.

4.2 Use Case Analysis

In the last chapter, use case analysis was introduced in the context of obtaining the

software requirements. In this chapter, use case analysis is implemented and functional

requirements are gained.

In this section, three main primary tasks conducted by the whole software system are

defined as use cases for further use case analysis:

1. Users who just arrive in the city and hope to discover the general information of

the city.

2. Users looking for nearby tour attractions

3. Users who have identified tour attractions which are worth sightseeing and hope

to travel within the tour attraction, are introduced to the tour site and helped

with navigation within the site’s buildings

According to these three primary tasks defined in the above section, UML diagrams for

the software system could be defined, as in Figure 4.1.

50

Figure 4.1 Overall system UML use case

The figure 4.1 shows the overall use cases of the system. Each use case can be detailed

through other UML diagrams. In the following section, Figure 4.1 is divided into three

sub UML diagrams.

The first use case is City General Introduction; it is broken down into two parts, namely

Weather Forecast and Introduction.

Figure 4.2 Use Case 1: City general introduction

As to the use case Weather Forecast shown in Figure 4.2, once the user launches the app

Tour Navigation, the first page of the mobile app will indicate what the weather will be

City General

Introduction

Nearby Tour

Attractions

Site Navigation

Server System

User 1

User 2

User 3

Weather Forecast

Introduction

51

of the city where the user is currently in. As to the use case Introduction, the

information including pictures and text will be presented as flipped page. The link on

the page could be clicked to reach videos uploaded on YouTube as well. The use case

index of use case one is detailed as below:

Table 4.1 Use case index (Use Case One)

Use case ID Use case name Primary actor Scope Complexity Priority

1 Weather Forecast Generic user In Medium 1

2 Introduction Generic user In Medium 1

The second use case Nearby Tour Attractions is broken down into two parts, namely

Displaying Pins and Introduction of Sites.

Figure 4.3 Use case 2: Nearby tour attractions

As to the use case Displaying Pins, once the app Tour Navigation gets the current

location of the app users, it displays all pins of nearby tour attractions, which are stored

in Google App Engine Big Table. As to the use case Introduction of Sites, once the app

user clicks pins on the map, the app Tour Navigation will display contents of general

introduction of the site. The use case index of use case 2 is detailed in Table 4.2.

Table 4.2 Use case index (Use Case Two)

Use case ID Use case name Primary actor Scope Complexity Priority

1 Displaying Pins Generic user In Medium 1

2 Introduction of Sites Generic user In Medium 1

The third use case Building Navigation is broken down into three parts, namely Indoor

<extends>

Displaying Pins

Introduction of Sites

52

Navigation, Locating and Introduction of Exhibited Objects.

Figure 4.4 Use case 3：Site navigation

As to the use case Locating, once the app user goes into the building, the user can scan

QR codes attached in the building, then the app Tour Navigation will report on the exact

location the user currently is in. As to the use case Indoor Navigation, once the user

chooses a certain destination which is stored in cloud server and returned for chosing

they hope to reach, the application will show pictures to indicate the path to get to the

destination. As to the use case Introduction of Exhibited Objects, once the user choose

certain exhibited objects they wish to look at, the application will show pictures to

indicate the path how to get to that object. In addition, introduction in the content of

pictures, videos and text will be displayed to the user.

Table 4.3 Use case index (Use Case Two)

Use case ID Use case name Primary actor Scope Complexity Priority

1 Indoor Navigation Generic user In High 1

2 Introduction of Exhibited

Objects

Generic user In High 1

3 Locating Generic user In Medium 1

From above use case analysis, the following functional requirements are gained:

1. Weather forecast. Once the app user is in a certain city, the app gets the GPS

signal to calculate which city the current user is in. The app Tour Navigation

sends a request with city name as parameter through Yahoo API. It gets the

response and displays the weather forecast on the app.

Indoor

Navigation

Introduction of Exhibited

Objects

Locating

53

2. General Introduction of the City. Once the app gets the current city name, it

sends a request to Google App Engine with the parameter of city name. The

response contains the introduction of pictures, videos and text. As to the pictures,

the server does not return the picture itself but the URLs. As to the videos, since

the app engine server does not support live stream protocol, the server returns

the URLs.

3. Displaying nearby tour attractions. Once the user is in a certain location, the app

Tour Navigation sends a request containing current longitude and latitude as

parameters to the server. The Google App Engine Big Table which stores the

information of tour attractions searches nearby tour attractions and returns

results. The app Tour Navigation generates pins of each tour attraction to display

them on the map.

4. General Introduction of the tour attraction. Once the user clicks the pin on the

map, the app Tour Navigation sends a request containing the tour attraction ID

as parameter. According to this ID, the Google App Engine Server searches the

Google Big Table and responds with general introduction, containing picture

URLs, video URL and text information. Once this information is retrieved, the

app displays them.

5. Navigation and Locating. Once the user enters the tour attraction site, the user

scans the QR code. While the app Tour Navigation deciphers the QR code

containing the vertex ID, the app Tour Navigation is informed of exact location

the user is in. When the user chooses the destination site, the vertex ID of start

and destination are sent to the Google App Engine server. The server calculates

the shortest path and returns the URLs of pictures indicating the shortest path.

6. Introduction of Exhibited Objects. This function is quite similar to function 5.

The only difference is when the user goes to the destination vertex, the

introduction of exhibited object will be displayed.

54

Chapter 5 System Design

In this chapter, the system design is implemented according to MVC

(Model-View-Controller) principle. To begin with, the architecture of the whole

software system is detailed. In later section, the user interface of the whole software

system and the structure of database are discussed.

55

5.1 MVC of the Software System

MVC stands for Model-View-Controller model. In this section, the system can be

defined through these three aspects.

Views define each user interface component on the mobile app screen. In addition, the

trigger events of certain UI components are also defined. Controllers are located in the

Servlets, receiving requests from mobiles. Once certain events are triggered, for

example, a button on the user interface is clicked, certain methods are executed by the

controller to dispatch computing tasks to models for further processing. There are

mainly two types of models in this thesis, namely business model and data model. Data

models mainly define how to map between objects and each record in the Google Big

Table. Business models are mainly responsible for receiving requests, taking data from

data model, processing data and returning the result back to controllers. Figure 5.1

details the relationship between these three parties:

Returning result

 Dispatch Requests

 Execute methods

Returning back Notifications

Figure 5.1 Relation between Model, View and Controller

Figure 5.2 illustrates the relationship between mobile and the Google App Engine server

in a more general perspective.

Controller (Servlet)

-Receive Requests

-Execute Methods in Java Classes

-Receive updates from Model

View (Mobile UI Interface)

-UI Components

-Triggered Events and Handler Methods

-Dispatch Requests

-Update UI

Models (Java classes)

-Storing data

-Calculation

-Returning results back to Controllers

56

 Requests Result Response

Figure 5.2 Relation between mobile and Google App Engine

The whole system could be divided into two parts namely the client and the server. The

client side is run by Android application and the server side is run by Google App

Engine. The data interaction between these two parties is run on the protocol of Http.

5.2 System Architecture

Figure 5.3 Modules relation

The whole system architecture is as detailed in the Figure 5.3: Modules are located in

three major parts. The first part is modules in Android, for dispatching requests and

handling responses. The second part is modules in Yahoo, for returning weather

information. The last part is modules in Google App Engine, for navigation and

Android Mobile Application

Google App Engine

1. Android

3. Google App Engine

2. Yahoo

57

introduction.

Function Weather Forecast

Figure 5.4 Modules in Weather Forecast

The modules that make up weather forecast part are shown in Figure 5.4. Following

sections detail how the modules interact with each other.

In the GPS positioning module, when the GPS sensor is triggered temporary location

information including latitude and longitude are received. The Location Listener

attached with GPS is updated and the location information can be gained. Then the

module dispatches requests containing location information to Yahoo Weather API

module in Yahoo server. This module in Yahoo retrieves latest weather information

wrapped in JSON Format. The information in JSON format is sent back to module

Displaying Weather Information as response. Once the module Displaying Weather

Information receives the data, it will display it on the screen.

As shown in Figure 5.5, modules in other functions of the whole software system, are

tightly linked with Google App Engine.

Function General Introduction of City

The mobile phone, or mobile for short, utilizes the module GPS Positioning to locate

where the mobile is then dispatches requests containing location information as

parameters to Google App Engine’s Big Table. Google Big Table takes two parameters

namely longitude and latitude of current location of user. On receiving such a request

this module queries the cloud database Google Big Table about city general introduction

1. Mobile

(Weather Forecast)

GPS

Positioning

Displaying

Weather

Information

2. Yahoo

Yahoo Weather

API

58

according to the current location. Once general introduction information including

picture URLs, video URLs and text introduction are received from Big Table, all this

information wrapped in JSON format is sent to module Displaying City Information.

This module will display this information in eye-pleasing UI style.

Figure 5.5 Other modules

Function Nearby Attractions

As shown in Figure 5.5, design pattern of Nearby Attractions is similar to the function

Weather Forecast. At first module GPS Positioning gains the current location and the

module dispatches the current location information as a request to Google Big Table.

Mo 1. Mobile

(General Introduction of City)

GPS

Positioning Displaying City

Information

Google Big

Table

1. Mobile (Nearby Attractions)

GPS

Positioning

Displaying Tour

Attractions

3. Google App Engine

Google Big

Table

1. Mobile

 (Tour Site Information)
Map Handler Displaying Tour

Site General

Information

1. Mobile

 (Locating and Navigation)

QR Code

Scan

Displaying Tour

Navigation and

Exhibited Objects

Shortest Path

Navigation

59

The Google Big Table searches records about tourist attractions which are near the

location provided by the request. Once results are calculated, the result will be

dispatched back to the Displaying Tourist Attractions Module. In module Displaying

Tourist Attractions, each record of one tourist attraction site is represented as one pin

attached on Google Map for display to user.

Function Tour Site Information

If the user is looking for information about a certain tourist attraction site, what they

need to do is to click the relevant pin on the map. Tour Site Information function takes

over and the Map Handler, attached to the Google Map View, receives the touch

gestures from users. Once the touch gesture is received, the Map Handler dispatches

requests to Google Big Table to request general information of specific tour site

including picture and video URLs and text description. Once the results are returned,

the information is displayed on the user interface screen.

Function Locating and Navigation

In the function we are most interested in, that of locating and navigation, scanning of

QR code is utilized. QR codes are attached in the building vertices to indicate current

location. Each QR code contains the ID of the vertex. Mobile is used to scan the QR

code. In module QR Code Scan, and a picture is taken of the QR Code. An open-source

library
2
 is utilized to decipher what ID the QR Code ciphers. Once the ID is known,

this ID is sent to the module Shortest Path Navigation as a parameter. In the Module

Shortest Path Navigation, all vertices are queried in Google Big Table. Each vertex has

eight attributes to indicate whether there are adjacent vertices. Due to the existence of

these attributes, the relations of vertices can be known. The shortest path algorithm is

conducted to calculate the shortest path. In the final stage, the URL of pictures showing

the path from start site to destination site are returned back as result. The module

Displaying Tour Navigation and Exhibited Objects downloads pictures from returned

URLs and displays the pictures to help the user navigate to destination.

2
 https://github.com/phishman3579/android-quick-response-code

60

As to exhibited objects, the module works in a similar manner. When the QR code near

an exhibit is scanned, the URLs of pictures, videos and text description about the

exhibited object are returned as a result, and displayed to user.

5.3 GUI Design

In this software system, the mobile screen is the only interface between human users

and the whole software system. In this thesis, the mobile application design strictly

follows the latest user interface design principle defined by Google, avoiding

fragmentation of user interface design on Android apps (Morris, 2011). Before the

guidance as suggested by Google, developers designed and implemented their

application’s user interface according to their own styles. Thus fragmentation of user

interface design style became a barrier for the Android platform in its competition with

IOS. Since the launch of Android 3.0, Google suggested certain conventions be

followed such as the tool bar should be posted on the top and the navigation button

should be at the top-left corner of the screen. The rest, i.e. the main content, should be

placed on the major part of the screen (Jain, Bose, & Arif, 2013).

Figure 5.6 Weather Forecast

Figure 5.6 illustrates what the interface for weather forecast looks like. As the Android

app UI design principle suggests, the main content should occupy the most proportion

61

of the screen, while other functions should be listed in the tool bar. Users are able to

choose refresh, search for nearby tourist attraction sites, and get the latest general

introduction in the tool bar. In the major component of the screen, detailed weather

information can be seen by users, including what the current weather is, the highest

temperature, and the lowest temperature.

Figure 5.7 General Introduction of City

Figure 5.7 illustrates the interface of general introduction of city. The interface is in the

shape of pages. The user swipes the screen from right to left in order to flip the page.

Figure 5.8 Tourist Attractions

Figure 5.8 illustrates the nearby tourist attractions. Users are able to click red pins to get

62

access to general introduction of nearby tourist attractions.

Figure 5.9 General Introduction of Tourist Attraction

Figure 5.9 illustrates the interface of general introduction of a tour attraction. Videos,

pictures as well as text description are included.

Figure 5.10 QR Code Scan

63

Figure 5.11 Path Navigation

Figure 5.10 illustrates that there is an image view for mobile phone’s camera to scan the

QR code. Once the QR code is scanned, the current location is deciphered and the

location is identified. Later as Figure 5.11 illustrates, pictures are loaded showing the

path to the destination.

5.4 Database Design

In this thesis, database Google Big Table is implemented on the Google App Engine.

Nearly all data are stored in Big Table. Since there are limitations on capacity of stored

objects and duration of connection with Google App Engine, big files such as pictures

and videos are not stored directly in the Big Table. Only their ID and URL are stored as

string while the picture and video files are stored in source code repository.

The table called City stores a city’s ID, name, introduction text and picture URLs.

The table Tour Attractions stores the attraction name, ID, longitude, latitude, text

description, URLs of four pictures and URL of Video.

The table Vertex stores Universal ID, ID, Story, Tour Attraction’s ID and the URLs of

pictures of eight directions of each vertex.

64

5.5 Design Decisions and Development Environment

Stored data format.

There are several reasons affecting what kind of format data is stored in: First of all,

Google Big Table limits the time of connection. Therefore it is not possible to download

large-size media files. Secondly, the Big Table limits the capacity of storage. Therefore,

media file will not be stored directly in Big Table. Photos and videos are uploaded to

source code repository or video website for access. Only the URL of these is stored in

the Big Table as keys to access.

Development Environment.

The prototype is developed mainly using Java and Servlet. As to the server side, all the

logic handlers are coded in Java and called by Servlet. All the Servlets are uploaded to

the Google App Engine to handle requests. As to the mobile side, the app is developed

in Java to send requests to Google App Engine and process responses from Google App

Engine.

Figure 5.12 Development Environment

Hardware configuration and development tools.

The prototype is to be developed mainly on the ThinkPad R400— Windows 8, 64bit.

The specification of the hardware is:

CPU: Intel (R), Core (TM)2 Duo, CPU P8700, @2.53GHz

RAM: 2.00GB

The main development IDE is Eclipse.

65

Chapter 6 System implementation
In this chapter, details on how each module was implemented will be provided.

Contents include what methods are implemented in each module, what data are

transferred within these modules and how data is structured and stored.

66

6.1 Weather Forecast

This module implements the designed function Weather Forecast. In the module

weather forecast, data transfer is only between mobile app Tour Navigation and Yahoo

weather API.

In the first step, since information is delivered through internet, internet access

permission needs to be claimed. Permission claims of INTERNET permission and

ACCESS_NETWORK_STATE permission are both claimed in Manifest.xml as

depicted in Figure 6.1 below:

Figure 6.1 Permission Claims

In the second step, methods of sending requests are defined. Three types of parameters

can be sent, namely location detail string which can be deciphered by Yahoo Server,

exact longitude and latitude as well as the GPS object of the smartphone.

In the third step, the method of how to handle returned weather information is defined.

As previously discussed, since the internet traffic situation is unpredictable, the main

thread is not the place for intensive time-consuming tasks as the user interface response

and interaction may be blocked. Thus, sending requests and handling responses are

asynchronised. Loading bar is loaded to indicate that weather information is being

gained. Detailed weather information is returned from Yahoo Weather in XML format.

Details include weather, humidity and the wind speed. Next, method of handling the

returned weather information is called once the detailed weather information responses

are received. In the last stage of loading, loading bar vanishes and the returned weather

information is displayed.

<uses-permission android:name="android.permission.INTERNET"

/>

<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

67

6.2 City General Introduction

This module implements the designed function General Introduction of City. This

module represents general model of how mobile app interacts with Google Cloud

Server.

In this module, the very first step is to populate the Google Big Table with collected

data. In this thesis, data only covers three major tour cities in New Zealand, namely

Auckland, Wellington and Christchurch. The data structure of table design is detailed in

Table 6.1:

Table 6.1 City general introduction

Attribute Name Data Type Info

ID String The Universal ID in Google Big Table

cityName String The Name of City

economyDescriptions String General Introduction of the Economy of the City

economyPicURL String The URL of Picture Used to Illustrate Economy of

the City

economyURL String The URL of Text Description of Economy of the City

generalDescriptions String General Introduction of the City

generalPicURL String The URL of Picture Used to Illustrate the City

generalURL String The URL of Text Description of the City

geographyDescriptions String General Introduction of the History of the City

geographyPicURL String The URL of Picture Used to Illustrate the

Geography of the City

geographyURL String The URL of Text Description of the Geography of

the City

historyDescriptions String General Introduction of the History of the City

historyPicURL String The URL of Picture Used to Illustrate the History of

the City

historyURL String The URL of Text Description of the History of the

City

peopleDescriptions String General Introduction of the population of the City

populationPicURL String The URL of Picture Used to Illustrate the

Population of the City

populationURL String The URL of Text Description of the Population of

the City

As mentioned in chapter 5, Data models mainly define how to map between objects and

each record in the Google Big Table. In the second step, the data model is designed to

68

transfer data in JSON format returned from the server to Java class object. To inject data

into Google Big Table and for data management convenience, data is encrypted into

parameters contained in a link in a web page first. When a link in the management page

has been clicked, data in parameters can be transferred into JSON object and later

transferred into Java class for storage in Google Big Table.

Once the data has been stored in Google Big Table, the data can be accessed through

Http query. Again, since the Internet traffic situation is unpredictable, Asynchronous

task is adopted to conduct this time-consuming task. In the Asynchronous Task, the

Apache HTTP Component is utilized to maintain the low-level Java component

focusing on Http connection. Once the connection is set up and data is returned, the data

can be transferred from JSON format into the group of attributes that are needed. The

attributes are the information the app needs.

A business model is needed to handle requests from the app. In this business model,

requests are gained with parameters. Parameters which are taken as filters for the query

play the role of identifying the records that should be taken from the Big Table.

In the app, the returned data is displayed in the page, in a format similar to Flipboard.

The Flipboard interface is a pleasing one with pages that can be flipped/swiped.

Flipboard attracts considerable number of users because of this reason(Crnkovic, 2010).

An open-source project named android-flip in GitHub makes this user interface style

available; this style is adopted in this thesis.

6.3 Nearby Tourist Attractions

This module implements the designed function Nearby Attractions. With regard to the

module Nearby Tourist Attractions, the process of populating data in the Google Big

Table and retrieving data from the Google Big Table is quite similar to the last module

discussed. The difference is explained in this section. To begin with, the data structure

design is different. The data table is designed as in Table 6.2.

69

Table 6.2 Nearby tour attraction

Attribute Name Data Type Info

ID String Universal Identification of Google Big Table

latitude String Latitude

longitude String Longitude

buildingId String The ID to Identify Tourist Site

buildingName String The Name of Tourist Site

description String General Description of Tourist Site

enterOrNot Bool Indicator to show whether Indoor Navigation Service will be

Provided

imageURL1 String URL of Illustration Picture One

imageURL2 String URL of Illustration Picture Two

imageURL3 String URL of Illustration Picture Three

imageURL4 String URL of Illustration Picture Four

videoURL String URL of Illustration Video

The app sends requests, in the form of URLs, to servlets in Google App Engine to gain

information of nearby tourist attraction sites, The URL contains parameters of latitude

and longitude. For example, the following URL stands for request sent to query_map

servlet with parameters of longitude and latitude:

 query_map?latitude=-36.85302&longtitude=174.76345

Tourist attractions that are within a 1-kilometer radius of the location will be searched.

In the servlet, -36.85302 and 174.76345 are taken as parameters. These two parameters

are added to filters for search.

Once data of tourist attractions is gained, the data is wrapped as polygon shown on the

map view of the app. The polygon is displayed as a pin. Once the user clicks a pin, a

click event is triggered. A method handling this click event will display tourist attraction

information.

6.4 Tourist Attraction Site Information

This module implements the designed function Tour Site Information. This module is

70

designed and implemented following the same principles as the previous modules.

Firstly, Google Big Table is populated with introduction data including text introduction,

picture and video URLs. Once the app sends requests with the ID of specific tourist

attractions to handling servlets in Google App Engine, servlets conduct search in

Google Big Table. Results are retrieved from Google Big Table and wrapped in JSON

Format to transfer back to the app. The app translates these data first and displays them

all on the screen.

6.5 Locating and Navigation

This module implements the designed function Locating and Navigation. Navigation

and locating the current position of user in the building are the major focus of this

thesis.

As to the navigation, the following steps are conducted to make this service available:

1. Populate the Google Big Table with data of storeys within a building.

2. Design and implement navigation algorithm in business model, located in

Google App Engine’s servlet. This is discussed later in this section

As to the first step, data structure design is listed in Table 6.3. Vertices were explained

in chapter 4.2.

Table 6.3 Vertices

Attribute Data Type Description

ID/Name String Universal ID of Google Big Table

buildingId String ID of Building Vertex Belongs to

counjunctionId String With Prefix of buildingId, ID of Vertex

directionOneUrl

directionTwoUrl

directionThreeUrl

directionFourUrl

directionFiveUrl

directionSixUrl

directionSevenUrl

directionEightUrl

String The URL of Pictures showing Eight Directions when

Users Standing at that Vertex

neighbourOneId

neighbourTwoId

String The ID of eight adjacent vertices.

71

neighbourThreeId

neighbourFourId

neighbourFiveId

neighbourSixId

neighbourSevenId

neighbourEightId

How vertices are linked with each other is discovered from the interior structure of the

building. In this thesis, only critical vertices that contribute significantly to searching

path are included. According to these relationships, vertices are linked with each other

to knit the map of the whole storey. There are IDs of eight directions of each vertex to

indicate which vertices are adjacent to the current vertex. The ID of start vertex and

destination vertex are the parameters for calculating the shortest path between these

vertices.

Eight photos of eight directions are taken for each vertex. These photos are stored in the

project repository but not the Google Big Table, given the problem of limited-time

connection with Google Big Table and limited storage capacity of the server. Since

URLs are strings, URLs are stored in the Google Big Table for further access.

Calculating the shortest path is conducted in the business model. To calculate the

shortest path, first of all, an adjacency list is constructed for describing vertex

relationship in each storey. Adjacency list consists of vertices; all vertices that are

adjacent to a vertex are listed in the adjacency list. Each vertex has its own adjacency

list. Thus, how vertices are linked with each other is described.

In the business model, breadth first search is utilized to search for the shortest path. At

first, the start vertex and its adjacent vertices from the adjacency list are put into the

queue. When the very first vertex which enters the queue is taken out, it is judged

whether it is the destination. If not, this vertex is recorded down as one part of shortest

path and all its all adjacent vertices are pushed, until the destination vertex is discovered.

If it is destination, the shortest path to this vertex is the shortest path to the destination.

After the shortest path has been calculated, each vertex on the route can be gained. The

72

relationship, namely which vertex is located adjacent to other vertex is gained.

According to the direction one vertex compared to another vertex, URLs of pictures are

returned. Once these URLs are gained, pictures showing navigation path are shown.

Since a considerable number of pictures are transferred from Google App Engine to the

app and each picture occupies certain amount of memory, it can be a challenge for the

app to display them efficiently. In this thesis, techniques utilized are memory caching

and disk caching. For the memory cache, a class named LruCache is utilized. In this

thesis, 12.5% of total memory is used as cache. However, there is still the possibility

that the memory is exceeded. For such cases, disk cache is utilized for storing pictures.

Another class, diskLruCache is utilized for caching pictures on disk.

The technique of scanning QR code is adopted to locate current position of user. To gain

the ID of the start vertex, the module in the app translates the QR Code to gain the

deciphered information of the QR code. In this thesis, the open-source library

QRCodeView
3
 in GitHub is adopted. In the app, the QR code scanning activity

implements the predefined methods, including method handling the event when QR

Code is successfully deciphered, handling the exception event when camera is not found

or when QR Code is not found in the image which is taken. Relevant code is triggered

when relevant events occur. In this scenario, when QR Code is successfully deciphered,

vertex ID is taken to be sent to business model for calculating the shortest path between

this vertex and chosen destination vertex ID.

6.6 Exhibited Objects

Exhibited objects are introduced based on the vertex. Since exhibited objects are located

near vertices, when users navigate to certain vertices the introduction to specific

exhibited objects will be displayed.

Data interaction between the app and Google App Engine is similar to the last module

3
 https://github.com/SkillCollege/QrCodeScan

73

discussed. The data structure of Exhibited Object is listed in Table 6.4:

Table 6.4 Exhibited Object

Variable Data Type Information

ID/Name String The Universal Identifier of Google Big Table

buildingId String Which Tourist Site this Exhibited Object is

located

imageURL1 String The URL of Illustration Picture One

imageURL2 String The URL of Illustration Picture Two

imageURL3 String The URL of Illustration Picture Three

imageURL4 String The URL of Illustration Picture Four

objectDescription String Text Introduction

objectId String The ID of object, with prefix of ID of Vertex

objectIntroductionVideoURL String The URL of Illustration Video

objectLocationId String The ID of Related Vertex

objectName String Name

74

Chapter 7 System Testing and Demonstration
After designing and implementing the software system, in this chapter we look at

testing the whole system, by testing the modules discussed in last chapter. Each module

is tested to ascertain whether it is performing correctly or not. In addition, screenshots

of the mobile app and Google App Engine administration web pages are provided to

demonstrate the availability of the whole system.

75

7.1 Weather Forecast

When the user clicks the app icon, the app presents the welcome page which indicates

what this app is generally aiming for.

Figure 7.1 Welcoming page

After the welcoming page, the app shows the loading bar (Figure 7.2) while the app

downloads the data from the Yahoo Weather API.

Figure 7.2 Loading bar

After successfully downloading the data, the data is presented to the user, as in Figure

7.3.

76

Figure 7.3 Weather forecast

7.2 City General Introduction

While testing the module General Introduction of the City, testing is conducted in two

parts. In the first part, the test to see whether raw data is returned successfully and the

second part to test the resulting user interface display.

After a request has been sent to Google App Engine with the parameter ‘City name’, the

returned raw data contains general information of the city which is queried from Google

Big Table. All the result is written on the servlet page and can be used for further

analysis.

The request URL is sent:

http://tournavigationlijunhao.appspot.com/query_citygeneral?cityName=Auckland

The returned data information is as expected and is shown in Figure 7.4.

http://tournavigationlijunhao.appspot.com/query_citygeneral?cityName=Auckland

77

Figure 7.4 Returned general introduction data

The raw data is returned successfully.

The first record of the raw data is description of the City’s economy.

The second record of the raw data is the URL of illustration picture of the economy. The

third record of the raw data is URL of long text description of Auckland’s economy.

The fourth record of raw data is description of Auckland’s geography.

The fifth record of raw data is URL of description picture of geography.

The sixth record of raw data is URL of long text description of geography.

The seventh record of raw data is description of history in Auckland.

The eighth record is the URL of illustration picture of history of Auckland.

The ninth record is the URL of long text description of history.

The tenth record of raw data is culture description of Auckland.

The eleventh record is the URL of illustration picture of culture of Auckland.

1. Most major international corporations have an Auckland

office, as the city is the economic capital of the nation.

2. http://upload.wikimedia.org/wikipedia/commons/7/7e/Brit

omart_Outside_Facade.jpg

3. http://en.wikipedia.org/wiki/Auckland#Economy

4. Auckland straddles the Auckland volcanic field, which has

produced about 50 volcanoes.

5. http://upload.wikimedia.org/wikipedia/commons/5/5f/Rang

itoto_from_Achilles_Point.jpg

6. http://en.wikipedia.org/wiki/Auckland#Geography_and_cli

mate

7. The isthmus was settled by Mori around 1350 and was valued

for its rich and fertile land.

8. http://upload.wikimedia.org/wikipedia/commons/2/20/Low

er_Queen_Street.jpg

9. http://en.wikipedia.org/wiki/Auckland#History

10. Auckland is home to many cultures.

11. http://upload.wikimedia.org/wikipedia/commons/b/b2/

Helen_Clark_welcomed_to_Hoani_Waititi_Marae_2006-02-06

.jpg

12. http://en.wikipedia.org/wiki/Auckland#People

78

The twelfth record is the URL of long text description of culture.

City general introduction data covers three cities, namely Auckland, Wellington and

Christchurch in Google Big Table. The test was conducted and the testing result is

presented in the following table. All data about the three cities are successfully returned

after dispatching the request.

Table 7.1 City general introduction testing result

City Return raw data successful?

Auckland Yes

Wellington Yes

Christchurch Yes

The second part testing is to test whether data returned is successfully represented in

Flipboard similar page in the mobile application. After testing, all raw data is

successfully loaded in the mobile page. Screenshots of the mobile application pages that

can be flipped are shown in Figure 7.5.

Figure 7.5 City general description

When the user clicks the ‘For more details’ button, the user is successfully directed to a

Wikipedia webpage for further detailed information, as shown in Figure 7.6

79

Figure 7.6 Long description

7.3 Nearby Tourist Attraction

The same approach as adopted in section 7.2 is adopted testing this module as well. At

first, we tets whether Google App Engine can return raw data about nearby tourist

attraction sites, accordingly, a request is sent with the parameter of specific location:

http://tournavigationlijunhao.appspot.com/query_map?latitude=-36.85302&longtitude=174.763

45

The returned data is:

Figure 7.7 Nearby tour attraction data

The raw data contains the name, ID, longitude and latitude of the tourist information.

http://tournavigationlijunhao.appspot.com/query_map?latitude=-36.85302&longtitude=174.76345
http://tournavigationlijunhao.appspot.com/query_map?latitude=-36.85302&longtitude=174.76345

80

The server is able to return the data successfully.

Various sets of combinations of latitude and longitude are also input to be tested:

Table 7.2 Nearby tour attraction testing result

Longitude Latitude Return raw data successful?

-36.85302 174.76345 Yes

-36.86302 174.77345 Yes

-36.87302 174.78345 Yes

-36.88302 174.79345 Yes

-36.89302 174.80345 Yes

The second part is to test whether raw data is successfully presented on the mobile

application.

Figure 7.8 Polygons

The data is displayed in the format of polygon successfully.

7.4 Building Description

Similar to the last two modules, testing is conducted in two parts. In the first part,

Google App Engine receives the request being part of the test of whether it is able to

return the building description data or not. The request url is sent:

http://tournavigationlijunhao.appspot.com/query_specificbuilding?buildingId=1

http://tournavigationlijunhao.appspot.com/query_specificbuilding?buildingId=1

81

The raw data is returned successfully, as shown in Figure 7.9.

Figure 7.9 Building Description Data

The first four URLs in Figure 7.9 are tourist site’s illustration pictures’ URLs. The Fifth

url is the URL for a video. The last bool value indicates whether the tourist site provides

indoor navigation service or not.

Three building Ids are input as part of the test:

Table 7.3 Building introduction testing result

Building Id Return raw data successful?

1 Yes

2 Yes

3 Yes

In the second part of testing, the raw data is succesfully presented in the app, as shown

in Figure 7.10.

http://tournavigationlijunhao.appspot.com/images/buildingDescr

iption/1/1_1.jpg

http://tournavigationlijunhao.appspot.com/images/buildingDescr

iption/1/1_2.jpg

http://tournavigationlijunhao.appspot.com/images/buildingDescr

iption/1/1_3.jpg

http://tournavigationlijunhao.appspot.com/images/buildingDescr

iption/1/1_4.jpg

http://www.youtube.com/embed/BkmrTS3DZE8

true

82

Figure 7.10 Building description

7.5 Exhibited object introduction

Similar with last modules, exhibited object introduction is tested in two modules. In the

first module, the Google App Engine is tested whether the server can return the

description raw data of exhibited object or not.

The request URL is sent:

http://tournavigationlijunhao.appspot.com/query_exhibitedobject?buisdldingId=2

The raw data is returned successfully:

Figure 7.11 Exhibited object description data

The first line of raw data represents display picture one of the exhibited object. The

second line of raw data represents display picture two of the exhibited object. The third

line of raw data represents display picture three of the exhibited object. The fourth line

of raw data represents display picture four of the exhibited object. The fifth line of raw

data stands for text description of the exhibited object. The sixth line of raw data stands

for the URL of introduction video. The seventh line of raw data stands for the name of

the object. The last line of the raw data stands for the Id of the object.

The second part of testing is to test whether the raw data is displayed on the mobile

application.

http://tournavigationlijunhao.appspot.com/images/exhibitedObjects/1/4/4-1.jpg

http://tournavigationlijunhao.appspot.com/images/exhibitedObjects/1/4/4-2.jpg

http://tournavigationlijunhao.appspot.com/images/exhibitedObjects/1/4/4-3.jpg

http://tournavigationlijunhao.appspot.com/images/exhibitedObjects/1/4/4-4.jpg

this is wt 406. Which specific for master thesis room

http://www.youtube.com/watch?v=4FgwvximJw4&list=UUAhC-ufgtoTQHTjSuYrGc9w&feat

ure=c4-overview

wt406

1-4-4-1

http://tournavigationlijunhao.appspot.com/query_exhibitedobject?buisdldingId=2

83

Figure 7.12 Exhibited object

The raw data is successfully displayed on the mobile application.

7.6 Shortest path navigation

Similar to previously explained modules, shortest path navigation is tested in two parts.

In the first module, the Google App Engine is tested whether the server can return

shortest path pictures’ URLs.

To show the path from vertex of ID 1_5_9 to vertex of ID 1_4_0, the request URL is：

http://tournavigationlijunhao.appspot.com/query_conjunction?start=1_5_9&destination=1_4_0

The returned raw data is：

Figure 7.13 URLs of shortest path pictures

The URL’s array stands for the navigation path pictures’ URLs. Different combination

of start conjunction and destination conjunction are tested.

http://tournavigationlijunhao.appspot.com/images/1/5/9-7.jpg,

http://tournavigationlijunhao.appspot.com/images/1/5/8-1.jpg,

http://tournavigationlijunhao.appspot.com/images/placeholder.jpg,

http://tournavigationlijunhao.appspot.com/images/1/4/0-7.jpg,

http://tournavigationlijunhao.appspot.com/images/1/4/1-3.jpg

http://tournavigationlijunhao.appspot.com/query_conjunction?start=1_5_9&destination=1_4_0

84

Table 7.4 Navigation path testing result

Start Destination Returned shortest path successfully?

1_5_9 1_4_0 Yes

1_4_0 1_5_9 Yes

1_5_9 1_4_4 Yes

1_4_4 1_5_9 Yes

1_5_9 1_4_5 Yes

1_4_5 1_5_9 Yes

1_5_9 1_4_7 Yes

1_4_7 1_5_9 Yes

As to testing the display on the app, the picture is successfully shown, as in Figure 7.14.

Figure 7.14 Navigation pictures

85

Chapter 8 Conclusion
This thesis gives a critical thought of what tourist navigation system should be, and how

the system was designed and what steps were conducted to implement the whole system,

according to the constructive methodology. In the final stage, demonstration is

conducted to show the availability of the whole system. In this final chapter, we draw

the conclusion of this thesis. Limitations and what work can be done in the future are

detailed.

86

Conclusion

This research thesis displays an innovative cloud based tourist navigation system,

following the principles of software development. It implements the objects of this

thesis research, which include setting up the navigation server on cloud computing

platform and providing navigation service to users through the smartphone application.

Recalling the original thesis questions, they are: How smartphones guide tourists to

travel in New Zealand with the help of smartphones or tablets, no matter they are in

outdoor or indoor environments? And how can smartphones be supported by the cloud

computing platform? Since the system has been implemented, these thesis questions

have been addressed successfully.

In addition, it has also successfully implemented the requirements detailed by natural

language and use cases. After completing the whole procedures of implementing the

whole software system, the main contribution of this thesis includes:

1. The prototype software system is constructed on the cloud platform, providing

navigation services to tourists steadily. Cloud based tour navigation system has

never been constructed before. This thesis illustrates the supportability of this

proposal, has implemented such a system, tested it and demonstrated it..

2. Data introducing tourist sites, navigation and locating user position are stored in

the cloud.

3. The prototype enables users to get tourism information through the smartphone

connecting to cloud platform. Previous tour-related mobile applications are

mostly content-fixed. Now contents of the navigation and introduction can be

updated according to the environment the user is in.

4. The prototype directs users no matter they are indoors or outdoors. Previous

navigation systems are limited either to the indoor environment or the outdoor

environment.

5. The prototype enables users to locate themselves by scanning QR code, which

saves the expense of additional hardware and improves the accuracy of locating

position.

87

However, this prototype is far from perfect, although it proves the possibility of

constructing cloud service to provide indoor navigation service.

1. The service is only available on the Android platform, the service on other

smartphone platforms is not available yet.

2. Tourism raw data collected was for the purposes of proof of concept and is not

sufficient and correct enough. Since all data is collected by an individual, the

objectivity cannot be guaranteed and the data may be biased. City general

introduction only covers three cities. Building introduction only covers three

sites in Auckland. Indoor navigation only covers two floors in one specific site.

3. The whole system is constructed on a trial, prototype version but not commercial

version. Whether it can handle overwhelming data and perform servicing

efficiently has not been tested.

4. The system is not fully tested. As mentioned earlier, due to time constraints, only

module testing of the software system is conducted.

Based on the limitations mentioned here, some points to be considered for future work

are:

1. The mobile app can be constructed using Phonegap technology; multiple

platforms are covered with only one-time development. In addition, with respect

to mobile devices, mobile web is another alternative technical solution that can

be used to cover different smartphone platforms.

2. Data could be filtered and collected by tourism specialists. In future, more data

could possibly be collected to cover tourism of the whole of New Zealand to

make this system applicable to real life.

3. Upgrade the system to financial version. Financial versions of apps deployed on

the Google App Engine are built to handle huge number of requests more

efficiently. What is more, capacity for storing data is large. Load testing can be

conducted on the system in the future to test whether it is robust enough to

handle huge number of requests simultaneously.

4. Other types of testing are also needed to be performed. In addition to module

88

testing, method testing, system testing and other types of testing need to be carried

out to ensure there are no crucial defects.

89

References

Alessio, D. (2010). Travel, tourism and booster literature: New Zealand's cities and towns at the turn of

the twentieth century. Studies in Travel Writing, 14(4), 383-396. doi:

10.1080/13645145.2010.522811

Alghamdi, S., Van Schyndel, R., & Alahmadi, A. (2013, 2-5 April 2013). Indoor navigational aid using

active RFID and QR-code for sighted and blind people. Paper presented at the Intelligent Sensors,

Sensor Networks and Information Processing, 2013 IEEE Eighth International Conference on.

Andrew, W. (2011). Blurring the boundaries between our physical and electronic libraries. The Electronic

Library, 29(4), 429-437. doi: 10.1108/02640471111156713

Android. (2014). Displaying Bitmaps Efficiently. from

https://developer.android.com/training/displaying-bitmaps/index.html

Ayre, L. B. (2012). RFID Costs, Benefits, and ROI. Library Technology Reports, 48(5), 17-19.

Binkley, D., Feild, H., Lawrie, D., & Pighin, M. (2009). Increasing diversity: Natural language measures for

software fault prediction. Journal of Systems and Software, 82(11), 1793-1803. doi:

http://dx.doi.org/10.1016/j.jss.2009.06.036

Bisio, I., Lavagetto, F., Marchese, M., & Sciarrone, A. (2013). GPS/HPS-and Wi-Fi Fingerprint-Based

Location Recognition for Check-In Applications Over Smartphones in Cloud-Based LBSs.

Multimedia, IEEE Transactions on, 15(4), 858-869. doi: 10.1109/TMM.2013.2239631

Chang-Jie, M., & Jin-Yun, F. (2008). Location-based mobile tour guide services towards digital dunhuang.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 37(B4), 949-953.

Correa, J. D. Y., & Ricaurte, J. A. B. (2014). Web Application Deveploment Technologies Using Google Web

Toolkit And Google App Engine-Java. Latin America Transactions, IEEE (Revista IEEE America

Latina), 12(2), 372-377. doi: 10.1109/TLA.2014.6749559

Crnkovic, G. (2010). Constructive Research and Info-computational Knowledge Generation. In L. Magnani,

W. Carnielli & C. Pizzi (Eds.), Model-Based Reasoning in Science and Technology (Vol. 314, pp.

359-380): Springer Berlin Heidelberg.

DarrelInce. (2010). JSON: 'Oxford University Press'.

Delev, T., Gjorgjevik, D., & Madzarov, G. (2010, 21-24 June 2010). Place-Tags, discovering and promoting

places through mobile phones and collaborative filtering. Paper presented at the Information

Technology Interfaces (ITI), 2010 32nd International Conference on.

Durresi, M., Luarasi, T., Baholli, I., & Durresi, A. (2013, 4-6 Sept. 2013). Targeted Advertisement Using

Smartphones and Cloud Computing. Paper presented at the Network-Based Information

Systems (NBiS), 2013 16th International Conference on.

Golda, A. F., Aridha, S., & Elakkiya, D. (2009, 22-24 July 2009). Algorithmic agent for effective mobile

robot navigation in an unknown environment. Paper presented at the Intelligent Agent &

Multi-Agent Systems, 2009. IAMA 2009. International Conference on.

Google. (2014a). Getting Started. Google Map API. from

https://developers.google.com/maps/documentation/android/start#getting_the_google_maps

_android_api_v2

Google. (2014b). Using JSPs. 2014, from

https://developers.google.com/appengine/docs/java/gettingstarted/usingjsps

Goossens, C. F. (1995). External Information Search. Journal of Travel & Tourism Marketing, 3(3), 89-107.

doi: 10.1300/J073v03n03_06

Gozick, B., Subbu, K. P., Dantu, R., & Maeshiro, T. (2011). Magnetic Maps for Indoor Navigation.

http://dx.doi.org/10.1016/j.jss.2009.06.036

90

Instrumentation and Measurement, IEEE Transactions on, 60(12), 3883-3891. doi:

10.1109/TIM.2011.2147690

Hansen, J., Grønli, T.-M., & Ghinea, G. (2012). Towards Cloud to Device Push Messaging on Android:

Technologies, Possibilities and Challenges. International Journal of Communications, Network

and System Sciences, 5(12), 839-849.

Hinch, S. W. (2010). Outdoor navigation with GPS. Birmingham, Ala U6 -

ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info:sid/summon.serialssol

utions.com&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.title=Outdoor+navigati

on+with+GPS&rft.au=Hinch%2C+Stephen+W&rft.date=2010-01-01&rft.pub=Wilderness+Press

&rft.externalDocID=1549198¶mdict=en-US U7 - eBook U8 - FETCH-aut_catalog_15491983:

Wilderness Press.

Holleman, P. J. (2012). Android Parking... Allensworth, Alder, " do you know...?. Parking Solutions", PN

2012 Feb; 66(2): 44-5. PN, 66(4), 11-11.

Hsu, H.-H., & Liao, H.-T. (2011). A mobile RFID-based tour system with instant microblogging. Journal of

Computer and System Sciences, 77(4), 720-727. doi:

http://dx.doi.org/10.1016/j.jcss.2010.02.011

Ibrahim, D., & Ibrahim, A. (2010). Real-time GPS based outdoor WiFi localization system with map display.

Advances in Engineering Software, 41(9), 1080-1086. doi: 10.1016/j.advengsoft.2010.06.005

Iozan, L. I., Collin, J., Takala, J., & Rusu, C. (2011). INERTIAL INDOOR NAVIGATION SYSTEM. Acta Technica

Napocensis, 52(1), 47-50.

Jain, R., Bose, J., & Arif, T. (2013, 2013). Contextual adaptive user interface for Android devices.

Jarle, H., Tor-Morten, G., & Gheorghita, G. (2012). Towards Cloud to Device Push Messaging on Android:

Technologies, Possibilities and Challenges. International Journal of Communications, Network

and System Sciences, 5(12), 839-849.

Jordan, L., & Greyling, P. (2011). Using the Google App Engine with Android Practical Android Projects

(pp. 275-310): Apress.

Joshi, D. S., Sridhar, R., & Chandrasekharan, N. (1993, 27-29 May 1993). Efficient algorithms for all-pairs

shortest path problem on interval, directed path, and circular-arc graphs. Paper presented at

the Computing and Information, 1993. Proceedings ICCI '93., Fifth International Conference on.

Kanyaru, J., & Phalp, K. (2009). Validating software requirements with enactable use case descriptions.

Requirements Engineering, 14(1), 1-14. doi: 10.1007/s00766-008-0070-8

Kenteris, M., Gavalas, D., & Economou, D. (2009). An innovative mobile electronic tourist guide

application. Personal and Ubiquitous Computing, 13(2), 103-118. doi:

10.1007/s00779-007-0191-y

Kingston, D. G., Eastwood, W. J., Jones, P. I., Johnson, R., Marshall, S., & Hannah, D. M. (2012).

Experiences of using mobile technologies and virtual field tours in Physical Geography:

implications for hydrology education. Hydrol. Earth Syst. Sci., 16(5), 1281-1286. doi:

10.5194/hess-16-1281-2012

Krishna Mohan, K., Verma, A. K., Srividya, A., & Papic, L. (2010). INTEGRATION OF BLACK-BOX AND

WHITE-BOX MODELING APPROACHES FOR SOFTWARE RELIABILITY ESTIMATION. International

Journal of Reliability, Quality and Safety Engineering, 17(03), 261-273. doi:

doi:10.1142/S0218539310003792

Lamb, A., & Johnson, L. (2013). QR Codes in the School Library: A Dozen Practical Uses. Teacher Librarian,

40(3), 63-67,71.

Leone, A., & Chen, D. (2007). Implementation of an object oriented data model in an information system

for water catchment management: Java JDO and Db4o Object Database. Environmental

http://dx.doi.org/10.1016/j.jcss.2010.02.011

91

Modelling & Software, 22(12), 1805-1810. doi: http://dx.doi.org/10.1016/j.envsoft.2007.05.016

Lin, Y.-S., Luo, S.-J., & Chen, B.-Y. (2013). Artistic QR Code Embellishment. Computer Graphics Forum,

32(7), 137-146. doi: 10.1111/cgf.12221

Link, J. Á. B., Smith, P., Viol, N., & Wehrle, K. (2012). Accurate map-based indoor navigation on the

mobile. Journal of Location Based Services, 7(1), 23-43. doi: 10.1080/17489725.2012.692620

Malawski, M., Kuz, x, niar, M., Wo, x, . . . Bubak, M. (2013). How to Use Google App Engine for Free

Computing. Internet Computing, IEEE, 17(1), 50-59. doi: 10.1109/MIC.2011.143

Masoumeh, M., & Mehregan, M. (2012). An Effective Model for Improving the Quality of Recommender

Systems in Mobile E-Tourism. International Journal of Computer Science & Information

Technology, 4(1), 83-92.

Montague, K. (2010). Accessible indoor navigation. Paper presented at the Proceedings of the 12th

international ACM SIGACCESS conference on Computers and accessibility, Orlando, Florida, USA.

Morris, J. (2011). Android User Interface Development Beginner's Guide Retrieved from

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=948578

Oh, J.-S., Kim, H., & Jayakrishnan, R. (2012). Tourist Activity Simulation Model for Assessing Real-Time

Tour Information Systems. Journal of Intelligent Transportation Systems, 16(3), 118-131. doi:

10.1080/15472450.2012.688388

Pan, S., Tsai, H., & Lee, J. (2011). Framing New Zealand: Understanding tourism TV commercials. Tourism

Management, 32(3), 596-603. doi: http://dx.doi.org/10.1016/j.tourman.2010.05.009

Prodan, R., Sperk, M., & Ostermann, S. (2012). Evaluating High-Performance Computing on Google App

Engine. Software, IEEE, 29(2), 52-58. doi: 10.1109/MS.2011.131

Rodriguez-Sanchez, M. C., Martinez-Romo, J., Borromeo, S., & Hernandez-Tamames, J. A. (2013). GAT:

Platform for automatic context-aware mobile services for m-tourism. Expert Systems with

Applications, 40(10), 4154-4163. doi: http://dx.doi.org/10.1016/j.eswa.2013.01.031

Santiago Júnior, V. d., & Vijaykumar, N. (2012). Generating model-based test cases from natural language

requirements for space application software. Software Quality Journal, 20(1), 77-143. doi:

10.1007/s11219-011-9155-6

Schiff, A., & Becken, S. (2011). Demand elasticity estimates for New Zealand tourism. Tourism

Management, 32(3), 564-575. doi: http://dx.doi.org/10.1016/j.tourman.2010.05.004

Severance, C. (2012). Discovering JavaScript Object Notation. Computer, 45(4), 6-8. doi:

10.1109/MC.2012.132

Shumack, K. A., Reilly, E., & Chamberlain, N. (2013). QR Code Mania! Strategies, 26(3), 9-12.

Song, W., Kim, Y., Kim, H., Lim, J., & Kim, J. (2014). Personalized optimization for android smartphones.

ACM Trans. Embed. Comput. Syst., 13(2s), 1-25. doi: 10.1145/2544375.2544380

Souza, V. S., Lapouchnian, A., Angelopoulos, K., & Mylopoulos, J. (2013). Requirements-driven software

evolution. Computer Science - Research and Development, 28(4), 311-329. doi:

10.1007/s00450-012-0232-2

Walter, U., & Just, T. (2013). Combining Testing Methods (Vol. 110, pp. 345-345): Deutscher

Aerzte-Verlag GmbH.

Weiss, M. A. (2007). Data structures and algorithm analysis in Java. Boston: Pearson/Addison-Wesley.

Wu, Y., Xu, J., Hu, Y., & Yang, Q. (2003, 12-15 Oct. 2003). A shortest path algorithm based on hierarchical

graph model. Paper presented at the Intelligent Transportation Systems, 2003. Proceedings.

2003 IEEE.

Yanying, G., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal

networks. Communications Surveys & Tutorials, IEEE, 11(1), 13-32. doi:

10.1109/SURV.2009.090103

http://dx.doi.org/10.1016/j.envsoft.2007.05.016
http://aut.eblib.com.au/patron/FullRecord.aspx?p=948578
http://dx.doi.org/10.1016/j.tourman.2010.05.009
http://dx.doi.org/10.1016/j.eswa.2013.01.031
http://dx.doi.org/10.1016/j.tourman.2010.05.004

92

Yu, H., Li, M., Liu, T., & Ning, Z. (2012, 26-28 Sept. 2012). Use Critical Sub-graph to Optimize the

In-building Shortest Path Algorithm. Paper presented at the Innovations in Bio-Inspired

Computing and Applications (IBICA), 2012 Third International Conference on.

Zhiyuan, L., & Yan, L. (2009, 18-20 Jan. 2009). A Novel Shortest Path Approach for Multiple Layers of

Graphs. Paper presented at the Computer Network and Multimedia Technology, 2009. CNMT

2009. International Symposium on.

