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Abstract 

With the decreased costs of security monitoring equipment such as cameras, video 

surveillance has been broadly applied to our communities and public places. However, at 

present most of the surveillance systems acquire anomalies and visual evidences only 

through video playback. Hence, it is necessary to develop the methods of real-time human 

behavior recognition so as to reduce security staff’s workload and improve work 

efficiency. 

The existing work needs feature extraction from the video frames to detect human 

body and achieve human behavior recognition. In this thesis, our focus is on the state-of-

the-art methods for human behavior recognition based on deep learning. Since deep 

learning methods have been well investigated in the past decades, as an end-to-end 

computational method, it simplifies feature extraction as the operations in a black box. 

In this thesis, we explore and exploit the state-of-the-art methods, which are utilized 

for human behavior recognition. More importantly, in order to attain our goal, 

spatiotemporal information was collected and employed to the implementation of our 

research project. We firstly adopted ensemble learning with deep learning methods. We 

proposed Selective Kernel Network (SKNet) and ResNeXt with attention mechanism, 

which generate positive results to recognize human behaviours.  

The contributions of this thesis are: (1) The ResNeXt and SKNet with attention 

mechanism make the best accuracy of overall human behavior recognition at the rate up 

to 98.7% based on public datasets; (2) The YOLOv3 + LSTM network to reply on both 

spatiotemporal information with class score fusion is able to achieve 97.58% accuracy 

based on our dataset for sign language processing. 

Keywords: Deep learning (DL), Convolutional neural network (CNN), Long short-term 

memory (LSTM), You Only Look Once (YOLO), Ensemble learning, Selective kernel 

network (SKNet), Attention mechanism 
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 Chapter 1 

Introduction 

 

 

The first chapter of this thesis consists of five sections. In the first 

section, the background and motivation of this thesis are introduced, 

human behavior recognition using deep learning methods as an active 

research topic can attain the recognition in real time, which has the 

functionality to enhance work efficiency. Our objectives will be 

discussed in the fourth section. This chapter also covers the details of 

research questions after in-depth understanding of the relevant 

literatures and research background. Finally, an overview of the 

structure of this thesis will be presented.  
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1.1 Background and Motivation 

With decreased costs of digital monitoring equipment such as cameras, video surveillance 

has been broadly applied to public places such as banks, transportation, shopping malls, 

etc. which allows security staff to monitor abnormal events. However, at present most of 

the video surveillance software platforms are still being run in traditional mode, which 

acquire anomalies and visual evidences only through offline videos. It is challenging to 

make real-time alarms, pop up notifications, and monitor incident scenes uninterruptedly. 

Hence, it is necessary to develop novel methods for real-time human behavior recognition 

so as to curtail the security staff’s workload and ameliorate the work efficiency. 

Moreover, deep learning models have exhibited excellent capabilities in human 

behavior recognition, how to make the model more stable and robust for human behavior 

recognition has become the new challenge of this study. In a nutshell, this research project 

aims to develop the cutting-edge deep learning methods so as to conduct human behavior 

recognition without too many manual interruptions. As the outcome of this research work, 

we anticipate reaching an overall up to 90% accuracy of recognition in real time. 

In intelligent surveillance, human detection (Chu et al., 2020; Huang et al., 2020; 

Zhang et al., 2020; Luo et al., 2020; Wu et al., 2020; Jiang et al., 2020; Yang et al., 2020; 

Bai et al., 2020; Varamesh et al., 2020), motion capture (Kiciroglu et al., 2020; Zhang et 

al., 2020; Xu et al., 2020; Habermann et al., 2020; ), human re-identification (Ahmed et 

al., 2020; Zeng et al., 2020; Huang et al., 2020; Liu, Chang, & Sheng, 2020; Zhou, Su, & 

Wu, 2020; Jin et al., 2020; Zhang et al., 2020; Chen et al., 2020; Yang et al., 2020; Yan 

et al., 2020; Zhang et al., 2020; Chen et al., 2020; Lin et al., 2020; Wang, & Zhang, 2020; 

Gao, Wang et al., 2020; Zhai et al., 2020), gait recognition (Li et al., 2017; Wang et al., 

2019; Fan et al., 2020; Li et al., 2020; Liu et al., 2020; Li et al., 2020; Wang et al., 2020) 

and human behavior analysis (Yan, 2021; Lu, Yan, & Nguyen, 2020) are employed to 

analyze and identify individuals in various scenes.  
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The term of action is described as an atomic movement at the limb level, it consists 

a diversity of movements, which include simple movements and cyclic body movements. 

The behavior is treated as a number of subsequent actions (Poppe, 2010). Thus, human 

action recognition is the fundamental of human behavior analysis, the process of behavior 

analysis is to monitor and analyze the undergoing actions. Monitoring the behaviors of 

pedestrians is the key task in human behavior recognition. The process of monitoring 

pedestrian is to capture the relevant context information so that the system is able to 

identify the behaviors of the pedestrian. There are two different recognition types, which 

include vision-based behavior recognition and sensor-based behavior recognition. In this 

thesis, our main focus is on the vision-based behavior recognition. The vision-based 

behavior recognition utilizes visual sensing devices, the output data of devices is either a 

video sequence or digitized visual data (Chen & Nugent, 2019). The surveillance system 

contains object detection, recognition, tracking, etc. (Li, Zhang, Yan, & Klette, 2016; Yan, 

2019), for traditional machine learning, the methods in vision-based behavior recognition 

are summarized as feature extraction, background segmentation, and pattern recognition. 

The investigation of human behavior in video footages is a research redhot topic in 

the field of vision-based surveillance. The most recent projects such as “Green Light 

Project” in Detroit, USA and “Skynet Project” in China, which have implemented the 

functionalities of human behavior recognition in intelligent surveillance for public health, 

security, and safety. In these projects, human behaviors are not only for individuals (e.g., 

running, fainting, walking, etc.), but also for multiple people in crowded events (e.g., 

talking, fighting, thefting, etc.). Moreover, depending on outdoor environments, human 

behaviors also are grouped into two categories: Normal and abnormal behaviors (Xiang 

& Gong, 2005). 

    However, all of these projects require large amount of human labors, which are time-

consuming and inefficiency. The methods for video surveillance (Aggarwal & Cai, 1997; 

Xiang & Gong, 2005; Zheng, Shen, Hartley, & Huang, 2010; Aggarwal & Ryoo, 2011; 

Cui, & Yan, 2016; Gu, Nguyen, & Yan, 2016; Lu, Shen, Yan, & Bacic, 2017; Zheng, 

Yan, & Nand, 2017) request multiple models to work together. A BCM-spiking neural 
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network was proposed for human behavior recognition, but the limitation is that the model 

can only achieve the feat of single person recognition (Meng, Jin, & Yin, 2011).  

    Deep learning is a part of the contents of machine learning, as the state-of-the-art 

technology, deep learning (DL) becomes more and more popular because of its 

superiority to conventional machine learning (Yan, 2021). Deep learning methods 

(LeCun, Huang, & Bottou, 2004; Hinton, Osindero, & Teh, 2006; Sarikaya, Hinton, & 

Deoras, 2014) were implemented not only for the vision-based object detection, but also 

for text-based natural language processing (NLP) as well as speech recognition. Moreover, 

deep learning as an end-to-end model normally does not require low-level processing 

which is able to cut off human labor and gain time efficiency though the training is costly. 

    Recent research work related to human behavior recognition is primarily based on 

deep learning. Ji et al. propounded a convolutional model for human behavior recognition 

which imported both spatiotemporal information into a 3D neural network. Moreover, the 

handcrafted features were not required, but a large number of labelled samples are needed 

(Ji, Xu, Yang, & Yu, 2013). A spatiotemporal CNN was put forward in order to recognize 

3D human activity which applies grayscale images as the inputs (Wang, Wang, Lin, Wang, 

& Zuo, 2014). Dobhal et al. suggested to use Gaussian mixture model (GMM) to snatch 

the binary frames of a person in foreground, the binary motion images (BMI) were taken 

into account to feed the CNNs through training and testing processes for single person 

behavior recognition (Dobhal, Shitole, Thomas, & Navada, 2015).  

In 2016, a hierarchical model in deep temporal based on long short-term memory 

(LSTM) was recommended to recognize multi-person behavior, two LSTM models were 

adopted for representing the action of single person in sequence and aggregating the 

information of single person for behavior understating (Ibrahim, Muralidharan, Deng, 

Vahdat, & Mori, 2016). Osayamwen et al. set forth that the softmax is normally applied 

to CNNs as the traditional loss function which is able to group different classes and 

achieved an effective training model. Thus, a Bayesian distribution-based regularization 

was accommodated in order to estimate the class probability, which uplifted the class 
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discrimination, maximized the distance between human behaviors, and minimized the 

distance between same behaviors (Osayamwen & Tapamo, 2019). 

Moreover, most of deep learning models require either deepened network layers or 

widened layers to betterment the accuracy of the model. However, as the number of 

hyperparameters increases, i.e., the number of channels, filter size, etc., the difficulty and 

computational costs of the deep learning networks will be also surged. Thus, the state-of-

the-art methods in deep learning for classification like ResNeXt model (Xie et al., 2017), 

Convolutional Block Attention Module (CBAM) (Woo et al., 2018), Selective Kernel 

Networks (SKNet) (Li et al., 2019) were investigated and implemented in our literature 

review. In the end, the results reflecting the positive accuracy are compared with previous 

methods for human behavior recognition, which will be further analyzed and discussed. 

A spatiotemporal convolutional network for human behavior recognition (ST-GCN) (Yan 

et al., 2018) was offered by automatically learning both the spatiotemporal patterns from 

visual data to achieve the human behavior recognition. 

In this thesis, we design and implement deep learning methods which are time 

efficiency and outperform in model training and testing. In this thesis, data preparation is 

the most critical step for this project. We mainly work with public datasets to implement 

our deep learning models, which include Weizmann dataset and KTH dataset. Four deep 

learning models were probed in this study. YOLOv3 model was implemented for human 

behavior recognition, which achieved up to 96.29% mAP (average precision) based on 

Weizmann dataset and 84.58% mAP based on KTH dataset. 

  



5 
 

1.2 Research Questions 

Human behavior recognition as an active research field has been investigated in the past 

decades. With the increase of population, more and more research attention has been 

concentrated on the issues related to public health, safety, and security. Therefore, how 

to find security problems in time, effectively control any incidents, and quickly resolve 

the issues has become one of the major challenges that all governments have to face. 

Intelligent surveillance, as an effective mean of security, can reliably and effectively carry 

out the mission of monitoring and protecting important spots, it has been widely 

employed to military, banking, shopping malls, and transportation stations, etc. In 

previous work, the focus was on traditional approaches which require several models to 

achieve human behavior recognition. However, with the increase of our computing 

capability, deep learning has become the mainstream to resolve the relevant issues. Thus, 

our research questions in this project are: 

Question 1: 

Traditional machine learning methods already have exhibited their performance in 

human behavior recognition. So, what are the advantages and disadvantages by bringing 

in deep learning methods? 

Question 2: 

Which kind of deep learning methods can be implemented for human behavior 

recognition? How about the research outcomes? 

Question 3: 

How to construct deep neural networks and make them more accurate, robust, and stable? 

Question 4: 

How to reduce the misclassification of similar behaviors in deep learning? 
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Question 5: 

How to resolve the evaluation problem that the accuracy of specific behavior recognition 

is relatively low? 

1.3 Contribution 

The focus of this thesis is principally on the implementation of human behavior 

recognition based on deep learning methods. The contribution of this thesis is to apply 

the end-to-end methods that are developed step by step according to the processes which 

are presented in this thesis. The methodology in deep learning for human behavior 

recognition encompasses four parts in this thesis: (1) data collection, (2) training the deep 

learning model, (3) fine-tuning the model, (4) resultant analysis for human behavior 

recognition. The proposed method and implementation will be delineated in Chapter 3. 

 Moreover, the algorithms which are developed in this thesis will be also analyzed, 

the methods export positive results and suit for human behavior recognition. A 

comparison of various state-of-the-art deep learning methods is presented in Chapter 2. 

The introduction of various approaches will also be detailed in the following chapter. 

 Furthermore, in this thesis, we work for human behavior recognition with multiple 

deep learning methods. This thesis also presents complete and detailed information for 

human behavior recognition using Python as a programming language correspondingly. 

 Last but not least, multiple deep learning methods will be presented and compared 

with machine learning methods which were set forth by other researchers.   

1.4 Objectives of This Thesis 

Firstly, this thesis introduced various machine learning methods and the state-of-the-art 

methods in deep learning which are able to be implemented for human behavior 

recognition. The comparison for both machine learning methods and deep learning 

methods will be iterated in this thesis. In addition, the outcomes of these methods will 
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also be evaluated in this thesis. Moreover, our proposed methods will also be studied and 

evaluated, the deep learning methods and our proposed methods will be compared in this 

thesis to test the stability and robustness.  

 Secondly, in order to achieve the recognition for human behaviors in real time, a deep 

learning framework is presented for further understanding. Therefore, the overall 

objective of this thesis is split into four parts which include data collection, data 

augmentation, models training and fine tuning, resultant evaluations, and analysis for 

human behavior classification. Moreover, we also collect our own datasets to test the 

proposed deep learning methods that can be used in real scenarios. The data augmentation 

is used to increase the amount of training data so as to improve the generalization ability 

and robustness of our proposed model, also prevent the over fitting problem. The fine 

tuning was selected to use for initializing our model to speed up our training time, also to 

overcome the small dataset size. 

 Ultimately, deep learning methods and traditional machine learning methods for 

human behavior recognition will be compared, the comparison of different deep learning 

methods and proposed methods for human behavior recognition will be presented in this 

thesis. Moreover, multiple methods will be justified according to their performance using 

empirical metrics in this thesis. 

1.5 Structure of This Thesis 

The thesis is structured as follows: 

 In Chapter 2, a literature review will be depicted, such as previous studies of 

traditional machine learning and deep learning methods. Moreover, typical models in 

deep learning for human behavior recognition will be also exposited in this chapter. Thus, 

in Chapter 2, we will mainly narrate the fundamentals of deep learning methods and the 

state-of-the-art methods, which is able to be applied to human behavior recognition. 
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In Chapter 3, the research methodology of this thesis will be stated. Moreover, 

potential solutions and answers will also be elaborated to answer the research questions 

in Chapter 1. Moreover, data collection and data preparation as well as data augmentation, 

will also be outlined for this research topic. The implementations with the evaluation 

metrics will also be demonstrated at the end of this chapter. 

In Chapter 4, our deep learning methods, proposed in Chapter 3, will be implemented, 

and evaluated, experimental outcomes will be expounded with the support of tables and 

figures. Moreover, the limitations of this research will be addressed as well. 

In Chapter 5, the discussions and analysis are depicted based on experimental results 

and outcomes we acquired in Chapter 4. Finally, the conclusion and future work will be 

set forth in Chapter 6. 
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Chapter 2 

Literature Review 

 

 

With the in-depth analysis of the research questions and related work, 

the focus of this thesis is on the methods in deep learning for human 

behavior recognition in real time. For example, the previous methods 

in deep learning are reviewed; moreover, the comparisons of 

traditional machine learning and deep learning methods are conducted. 

The state-of-the-art methods in deep learning for human behavior 

recognition will be summarized in this chapter. We will propose our 

methods in the next chapter to solve the problems which are found in 

this chapter. 
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2.1 Introduction 

Surveillance cameras are ubiquitous in our society which have been utilized in both 

private premises such as highly secure areas and public precincts like streets, etc.  

(Petrushin, 2005; Chen & Zhang, 2006; Popoola & Wang, 2012). Moreover, with the 

increasing population, public security and safety become more and more crucial. Human 

behavior recognition as an active research field in intelligent surveillance has received 

extensive attention. Successfully solving the problems of human behavior recognition 

benefits not only for public security (abnormal scenarios), but also for private safety 

(smart homes). The key task of this research project is to extract visual information from 

digital video footages; more specifically, Region of Interest (ROI) for human body needs 

to be detected. A myriad of digital video and image processing techniques were offered 

to extract and analyze the true characteristics of human behaviors. It needs the 

technologies from digital image processing, pattern recognition, machine learning, and 

deep learning, etc. 

With the rapidly increasing number of surveillance cameras in various scenarios, 

locating and extracting the region of interest (ROI) from thousands of surveillance videos 

have become prominent problems. Along with the continuous expansion of surveillance 

systems, a vast number of video footages have been archived, which become more and 

more tough to obtain meaningful and valuable information from the large amount of 

visual data, identifying a visual object is becoming less efficient. Therefore, how to make 

surveillance more efficiency in the environment with tremendously big data needs to be 

taken into consideration. 

Video surveillance has been explored and exploited for decades, research work based 

on video analysis such as VSAM (visual surveillance and monitoring), IVPL (image and 

video processing laboratory), AIRVL (artificial intelligence, robotics, and vision 

laboratory), etc. has taken a great step. Vehicles and pedestrians along with object 

trajectories (Krumm, et al., 2000; Siebe & Maybank, 2002; Chen & Zhang, 2006) have 

made digital surveillance more “intelligent”. Intelligent surveillance is able to analyse 
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streaming videos automatically without human interventions and achieve further amazing 

research outcomes such as image segmentation and scene understanding.  

Most of the surveillance systems only pay attention to detect, recognise, and track 

objects; however, the actions and activities of visual objects were not fully taken into 

consideration, which makes surveillance not intelligent enough. For the approaches in 

human behavior recognition, both low-level (without semantic understanding) and high-

level processes (with semantic understanding) are needed. The low-level process assists 

to localize the region of interest, extract features, and minimize the useless information 

from video footages, the high-level process analyses these features to attain human 

behavior understanding ultimately. Generally speaking, visual features such as edge, 

shape, statistical features are described and adopted for pedestrian detection. Also, the 

representative features such as Harr wavelets (Gerónimo, López, Ponsa, & Sappa, 2007), 

Histogram of Oriented Gradient (HOG) (Dalal & Triggs, 2005), Local Binary Pattern 

(LBP) (Zheng, Shen, Hartley, & Huang, 2010) and edgelet features (Wu & Nevatia, 2005) 

exhibit positive outcomes for pedestrian detection as well. 

Nowadays, with the growing capacity of computing devices, deep neural networks 

(DNNs) have gained massive attention to detect visual objects, which lead to a new era 

of computer vision (Lu, Shen, Yan, & Bacic, 2017; Asadi-Aghbolaghi, Clapes, 

Bellantonio, Escalante et al., 2017; Herath, Harandi, & Porikli, 2017; Zhang, Yan, & 

Narayanan, 2017; Pan, & Yan, 2019; Pan, & Yan, 2020; Lu, Yan, & Nguyen, 2020; Yu, 

& Yan, 2020). DNNs (Hinton, Osindero, & Teh, 2006; Szegedy, Ioffe, Vanhoucke, & 

Alemi, 2017) encapsulate multiple hidden layers, the pretraining method is adopted to 

resolve the problems of an optimal local solution, the number of hidden layers is run up 

with the “depth” in the neural network model. The state-of-the-art methods heavily rely 

on artificial neural networks, such as convolutional neural networks (CNNs), R-CNNs, 

Fast R-CNNs, Faster R-CNNs, and single shot multi-box detector (SSD). Moreover, deep 

learning was implemented in both supervised and unsupervised learning (Ji, Xu, Yang, 

& Yu, 2014). Apparently, the work has unmistakably unveiled the differences between 

deep neural networks and shallow neural networks in various aspects (Liu, et al., 2016). 



12 
 

In human behavior recognition, bounding box was taken into consideration for deep 

neural networks to resample the proposed pixels. Because there are inherent local patterns 

in an image such as eyes, nose, mouth, etc., CNNs were derived from combining digital 

image processing and artificial neural networks. Traditional CNNs enclose multiple 

convolutional layers and subsampling operations, the outputs of convolutional layers are 

extracted as the feature maps which are flattened and fed into a fully connected layer. 

CNN links the upper and lower layers through convolution kernels. A convolutional 

neural network is a deep neural network with a convolutional structure. The convolutional 

structure diminishes the requirements of memory space occupied by normal neural 

networks. It has three crucial operations that are local receptive fields, weight sharing, 

and pooling layer, which effectively trims the number of network parameters and 

alleviates the problem of overfitting the model. Convolutional neural network is a kind 

of multilayer neural networks. The convolutional layer and pool sampling layer are the 

core modules to carry out the feature extraction of convolutional neural networks.  

This network model takes advantage of gradient descent to minimize the loss 

function so as to adjust the weights in the network layer by layer and heighten the 

accuracy of the network through frequent iterative training. The low hidden layer is 

comprised of max pooling layer and sampling layer. The high hidden layer is the layer 

being employed as logistic regression classifier of the fully connected layer 

corresponding to the traditional multilayer perceptron. The input of the first fully 

connected layer is an image generated by using feature extraction from the convolutional 

layer and the subsampling layer. The output layer is a classifier that combines logistic 

regression, softmax regression, or the support vector machine (SVM) to classify the input 

image. 

The structure of convolutional neural networks includes convolutional layer, pooling 

layer, and fully connected layer. Each layer has multiple feature maps, each feature map 

extracts a feature of the input through a convolution filter, each feature map has multiple 
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neurons. After the input images are convolved or filtered, the local feature is extracted. 

Once the local feature is obtained, its positional relationship is also determined.  

The input of each neuron is connected to the local receptive field of the previous 

layer. Each feature extraction layer is followed by using a calculation layer to obtain local 

average and secondary extraction. It is also called a feature mapping layer. Each layer of 

the network consists of multiple feature mapping planes. A connection between neurons 

has one weight. The mapping of the input layer to the hidden layer is usually called a 

feature map, that is, a feature extraction layer is acquired through a convolution layer, and 

a feature mapping layer is obtained after pooling operations. 

The core idea of convolutional neural networks is local receptive field, weight 

sharing, and pooling operations, in order to achieve simplified network parameters and 

make the network having a wide degree of displacement, scale, scaling, nonlinear 

deformation stability. The local receptive field is vital because the spatial connection of 

the image parts is partial, each neuron does not need to scan the entire image, it only 

requires finding the local features, these local features are integrated at a higher level. 

Thus, the global information will be gained, which greatly diminishes the number of 

neuron connections. Parameter sharing amongst multiple neurons cuts off the number of 

parameters, multiple feature maps are thus got by deconvoluting images with multiple 

filters.  

In fact, weight sharing is to convolute the image with the same kernel, which means, 

all neurons in the first hidden layer execute exactly the same operations at various 

locations of the input image. Weight sharing is to detect the same type of features in 

different positions, that is, convolution networks are adaptive to the small range of image 

translation, which has better translation invariance. Moreover, compared with general 

artificial neural networks, convolutional neural network has the following advantages: 

Firstly, the structure of CNNs is apt to the structure of image; secondly, feature extraction 

and classification are carried out to make feature extraction better for feature 

classification at the same time; thirdly, weight sharing can trim off the total number of 
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parameters of a neural network and make the structure of the neural network simple and 

adaptive. 

The same convolution kernel is shared among all images, the images still retain the 

original position after convolution operations. For the typical CNNs, ReLU (Nair, & 

Hinton, 2010) as the activation function, it can alleviate the problem of gradient vanishing, 

by using ReLU function, the network is able to converge faster and also sparsely be 

activated. The definition of ReLU function is showed in Eq.(2.1.1). 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.1.1) 

The pooling layers as one of the important components in CNNs which are applied 

to compress data and parameters so as to lessens overfitting. Through compressing the 

input feature map, on the one hand, it makes the feature map smaller and simplifies the 

computational complexity of the neural network; on the other hand, it performs feature 

compression and extracts the principal features.  

There are two general types of pooling operations, one is average pooling and the 

other is max pooling, where the average pooling performs the downsampling by dividing 

the input into rectangular pooling regions and then calculating the average values of each 

region. The max pooling carries out downsampling by splitting the input into rectangular 

pooling regions and calculating the maximum values of each region. In general, the max 

pooling is much effective for the model. Although both max pooling and average pooling 

are able to fulfil data downsampling, max pooling much likes feature selection, selects 

features for better classification and recognition, and provides nonlinearity. The fully 

connected layers are as same as the typical ANNs, which will output an n-dimensional 

vector. 

Moreover, region proposal methods and region-based convolutional neural networks 

(R-CNN) are most successful with high precision in object detection, the advantage of 

this model is that feature maps are initially generated by using semantic segmentation, 
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which are able to reflect the image content by adopting region proposal to ensure a high 

recall, when selecting fewer windows (Ren, He, Girshick, & Sun, 2017).  

Faster R-CNN is based on selective search (Uijlings, Sande, Gevers, & Smeulders, 

2013) and leads to outstanding achievement in a series of competitions (Ren, He, Girshick, 

& Sun, 2017; He, Zhang, Ren, & Sun, 2016), which is an object detection algorithm that 

utilizes a variety of selection strategies and merges the final results. Region proposal 

network (RPN) is applied to train data in the end-to-end way and generate the accurate 

location of regions. The method merges RPN and Fast R-CNN into a single network 

which is able to accelerate the detection (Ren, He, Girshick, & Sun, 2017). Compared to 

traditional approaches, deep learning approaches accomplish the end-to-end processing 

along with higher classification confidences which also show an invariant to illumination, 

pose, etc. (LeCun, Huang, & Bottou, 2004; Lee, Gallagher, & Tu, 2016). 

In this thesis, we will introduce not only traditional machine learning, which was 

offered to human behavior recognition, but also deep learning. After all, we are keen on 

developing a new methodology using deep learning for detecting various human 

behaviors so as to attain real-time recognition. This research work is based on two public 

datasets and our own dataset, four deep learning methods were selected for the 

experiments in order to compare the performances. Meanwhile, deep learning model 

based on attention mechanism is also investageted in this thesis. 

2.2 Machine Learning 

With the development and applications of computer science and artificial intelligence, 

digital video analysis is rising rapidly. One of the core applications in video analysis is 

human behavior recognition, as the active research field has attracted much attenction in 

the intelligent surveillance, owing to the surge of security issues. The accuracy and 

rapidity of behavior recognition will directly influence the follow-up work of video 

analysis. Therefore, how to improve the accuracy and speed of human behavior 

recognition by using digital videos has become a key issue in video analysis.  
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 Traditional machine learning methods for human behavior recognition require 

multiple processes to be combined together, which encapsulates preprocessing, feature 

extraction, training and classification, etc. Moreover, preprocessing and feature extraction 

play a pivotal role in human behavior recognition, which directly takes actions based on 

the final results.   

 According to the existing research work (Aggarwal & Ryoo, 2011), there are multiple 

approaches to attain human behavior recognition through traditional machine learning, 

which is grouped as single-layered approaches, hierarchical approaches, and histogram- 

based approaches. Single-layer approaches are directly utilized the image sequences to 

recognize human behaviors, which are more suitable for recognizing behaviors with 

sequential characteristics; Hierarchical approaches aim to describe high-level human 

behaviors by split the simple behaviors into sub-events, so that complex behaviors can be 

analyzed and understanded; Histogram-based approaches are proposed and well-studied 

since it have the scale invariance and rotation invariance when the gradient direction is 

unified. Each approach shows the positive results in human behavior recognition, lays a 

solid foundation for human behavior recognition.   

Typical machine learning methods for human behavior recognition mainly include 

interest points, dense tracks, etc. The key points are accommodated to recognize human 

behaviors by detecting the corner points in video and extracting the features of the corner 

points. However, corner points are generated by fully suppressing background noises, 

which will not only influence the final results, but also curtail the speed of recognition.  

Dense track is to take dense samples on multiple scales into consideration, then trace 

the sampled points so as to get the track, and finally extract the characteristics of the track 

for behavior recognition. However, this method has highly computational complexity and 

intensity for high dimension features, which will take up a wreath of memory, so it is 

difficult to achieve real-time recognition. In 2013, Wang et al. proffered a dense 

trajectories (DT) approach (Wang, Kläser, Schmid, & Liu, 2013) using optical flow to 

get the motion of videos, and extract features along the trajectory to attain the action 
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recognition. Moreover, Wang et al. enhanced the propounded dense trajectory (iDT) 

approach (Wang, & Schmid, 2013), the main improvements are optimization of optical 

flow, feature regularization, and feature encoding. These betterments have greatly 

uplifted the algorithm, the accuracy of UCF50 dataset has grown from 84.5% to 91.2%. 

2.2.1 Motion Detection 

Motion detection and tracking are affected by complexity and variety of the environment. 

Thus, none of the current techniques will perfectly fit all the environments. Moving object 

detection as the primary step for further analysis should be considered first (Papageorgiou, 

Oren, & Poggio, 1998; Poppe, 2007; Joshi & Thakore, 2012), it will directly affect the 

final recognition results. Moreover, analysing image sequence is the predominant 

objective to detect moving objects which relates to a background scene (Elhabian, El-

Sayed, M., & Ahmed, 2008), video footages are regarded as the combination of 

continuous static frames which can be tackled by using image processing methods as well. 

The major object detection approaches which contain background subtraction, temporal 

differencing, and optical flow together (Kulchandani & Dangarwala, 2015). 

The background subtraction, as the most straightforward method by subtracting 

current frame and background frame, it is able to be utilized in the complex background 

and adopted for the static cameras (Wren, Azarbyejani, Darrell, & Pentland, 1997; 

Piccardi, 2004). However, for outdoor environments such as bad weather, lighting, etc., 

background subtraction becomes less sensitive (Rakibe & Patil, 2013). In consecutive 

images, time difference between two adjacent frames is equivalent to extract motion 

region in the images.  

Optical flow detects moving objects by using changes of pixels in temporal domain 

and the correlations between adjacent frames. In 2000, a motion foreground detection 

algorithm based on morphological changes was proposed (Stringa, 2000). Brendel et al. 

(Brendel & Todorovic, 2009) implemented the Dynamic Time Warping algorithm for 

visual object segmentations. Zhou et al. (Zhou, Xu, Tao, & Gong, 2005) proposed a 
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spatiotemporal model by utilizing Markov random field (MRF) method to represent the 

changes of foreground and background. However, for complex scenes, the single 

background extracted from a video sequence is no longer applicable. Therefore, the 

methods for modelling complex background have been investigated. Haritaoglu et al. 

(Haritaoglu, Harwood, & Davis, 1998) suggested an algorithm which works for the scope 

of grayscale intensities, the background was modelled by using the minimum and 

maximum intensity. The mixture of Gaussian model was proposed (Stauffer & Grimson, 

1999) which utilizes Gaussian mixture distributions as statistical models for each pixel. 

The parameters of each Gaussian distribution are updated continuously to generate the 

gradual changes of the background, which solved the problem of multimodal distribution 

of pixels related to lighting changes in background. 

2.2.2 Human Behavior Recognition in Machine Learning 

After found the region of interest (ROI), the high-level processing for semantic and 

annotation of human behavior will be processed to achieve our goal, which encloses the 

recognition and classification processes to finally export the results. Normally, ROI as 

the global representation is obtained from background subtraction which includes 

silhouettes, edges, and optical flow. 

    Both silhouette and shape are applied to describe actions, two templates based on 

contour-based mean motion shape (MMS) and motion-based average motion energy 

(AME) were employed to extract features, the nearest neighbor classifier was taken for 

recognizing human actions (Wang, & Suter, 2006). In 2007, Wang et al. suggested 

silhouettes feature extraction and then use HMM to achieve human action recognition 

(Wang, Huang, & Tan, 2007). Euclidean distance was used to measure the similarity of 

two silhouettes (Weinland, Boyer, & Ronfard, 2007), Chamfer distance was adopted 

which eliminates the preprocessing step of background subtraction (Weinland, & Boyer , 

2008). 
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 In addition to use silhouette information, motion information of human body is often 

calculated, such as background difference, optical flow etc. When the background 

difference method cannot work well, the optical flow method was taken into account. 

However, it also is affected by noises. Optical flow is calculated at the center of human 

body, which effectively low down the impact of noises (Efros, Berg, Mori, & Malik, 

2003). 

 In 3D space, spatiotemporal volume (STV) is gained by using given data. Blank et 

al. obtained STV from silhouette information in video sequence for the first time (Blank, 

Gorelick, Shechtman, Irani, & Basri, 2005; Blank, Gorelick, Shechtman, Irani, & Basri, 

2007). A series of STVs have been offered for each video, each STV only covers part of 

the information in temporal domain (Achard, Qu, Mokhber, & Milgram, 2008). Ke et al. 

combined the silhouette with optical flow as the global features to get human behavior 

recognition (Ke, Sukthankar, & Hebert, 2007). The 2D SURF features (Bay, Tuytelaars, 

& Van Gool, 2006) are extended to 3D, which earned 84.26% total accuracy based on 

KTH dataset, each cell of these eSURF features contains the sum of Harr-wavelet features 

(Willems, Tuytelaars, & Van Gool, 2008). 

 Laptev extended Harris corners to 3D. The pixel intensities of the neighborhood of 

these spatiotemporal feature points have significant changes in the spatiotemporal domain 

(Laptev, 2005). Laptev et al. took use of local histogram of oriented gradient (HOG) and 

histogram of oriented optical flow (HOF) to recognize human behavior based on KTH 

dataset which reaches up 91.8% accuracy (Laptev, Marszalek, Schmid, & Rozenfeld, 

2008). Klaser et al. increased the dimensionality to 3D, which achieved 91.4% accuracy 

based on KTH dataset (Klaser, Marszalek, & Schmid, 2008). The same work was 

investigated by Scovanner et al., which proposed a 3D SIFT, and achieved 82.6% 

accuracy based on Weizmann dataset (Scovanner, Ali, & Shah, 2007). Wang et al. applied 

bag-of-features (BOF) with SVM for human behavior recognition, in the most cases, the 

best description operator is a combination of gradient and optical flow (Wang, Ullah, 

Klaser, Laptev, & Schmid, 2009). 
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2.3 Deep Learning 

Artificial neural networks (ANNs) were deeply investigated in past decades (Sondak & 

Sondak, 1989; Bajpai, Jain, & Jain, 2011), the networks fully take advantage of human 

brain neurons from the aspect of information processing, establish simple models, 

construct networks following the neuron connection methods. A neural network is an 

operational model for information processing using neural networks, which consists of a 

large number of neurons connected to each other. Each node represents a specific function, 

called activation function. The connection between two neurons is represented by using 

a weight for passing the connected signal, which is stored in the memory of artificial 

neural networks. The output of the network varies depending on the connection, weight, 

and activation function of the network. Most of ANN models are based on supervised 

learning. 

In 1943, McCulloch and Pitts put forward the first artificial neuron model (M-P 

model), known as linear threshold gate (McCulloch & Pitts, 1943). The M-P model is the 

abstractive and simplified one that was constructed following the structure and principle 

of biological neurons. In the M-P model, x1, x2,… , xn are a set of inputs of neurons, w1, 

w2,… , wn represent the weights associated with the inputs,  represents the bias, f stands 

for the active function, y is the output of neurons which means the binary value. The 

model is shown as Eq. (2.3.1), 

𝑦 = 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖 − 𝜃). 

(2.3.1) 

Moreover, each neuron in the neural network receives the output value of the upper 

layer as the input value of this neuron, transfers the input value to the next layer, the input 

layer will directly transfer the input attributes to the next layer (hidden layer or output 

layer). In multilayer neural networks, there is a functional relationship between the output 

of the upper node and the input of the lower node. This function is called activation 

function which is one of concepts of ANNs and DNNs. The activation functions include 
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sigmoid function (Hahnloser & Seung, 2006), hyperbolic tanh function, ReLU function 

(Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000; Hahnloser. & Seung, 2002). 

In literatures, sigmoid and hyperbolic tanh functions were normally treated as activation 

function, ReLU function mostly is applied to the multilayer neuron networks. Sigmoid is 

a nonlinear activation function, transfers the continuous real value of the input into the 

output between 0 and 1,  

𝑓(𝓏) =
1

1+ℯ−𝓏
. 

(2.3.2) 

    In deep neural network, gradient exploding and gradient vanishing are frequently 

occured when the gradient is transferred reversely, the probability of gradient exploding 

is very small, but the probability of gradient vanishing is relatively large. Also, sigmoid 

function is not zero-centered activation, which will affect the gradient.   

    Hyperbolic tanh function is picked up in order to solve the gradient problems, the 

output of hyperbolic tanh function is zero-centered between -1 to 1. This function is taken 

affects by using exponentiation (an arithmetic operation on numbers), which ramps up 

the training time. 

𝑓(𝑥) =
ℯ𝑥−ℯ−𝑥

ℯ𝑥 + ℯ−𝑥
 (2.3.3) 

 ReLU function 𝑓(𝑥) = max⁡(0, 𝑥+)  as the most frequently-used activation 

function, the convergence rate of SGD algorithm is faster than sigmoid and tanh functions. 

According to Eq. (2.1.1), if 𝓍 > 0, it does not have gradient vanishing and gradient 

exploding problems. Moreover, it does not require the exponentiation, which greatly cuts 

off the training time. 

The perceptron (Rosenblatt, 1958) was profferd to enhance the M-P model; it adds 

extra input to represent the bias, the weights can be adjusted. Compared to the models, 

the perceptron model requires identical weights and thresholds. Moreover, in the 

perceptron model, weights can be both positive and negative. The basic perceptron model 
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encloses two layers of neurons, the input layer receives external data and then transfers it 

to the output layer. 

Generally, in order to train and learn neural networks, a set of input data and output 

data are required. After the neural network gets converged, the weights are corrected 

according to the errors between the actual output and the expected output. One of the 

most important capabilities of neural networks is its ability to learn from the environment 

by continuously adjusting the weights and thresholds of the neurons till the output error 

of the network attains to the desired level. However, once the network is well trained, the 

weights cannot be changed; by adding new data into the network, the model needs to be 

retrained (Miller & Khan, 2011). The basic ANNs like multilayer neural networks 

encapsulate three or more layers including input layer, output layer, and one hidden layer 

at least. The neurons in each layer are fully connected with the ones in the next layer, 

there is no connection in the same layer or cross layer between neurons.   

Backpropagation (BP) in ANNs has been successfully applied to various 

applications, typically including speech recognition, pattern recognition, and object 

recognition, etc. Through complicated learning rules, BP algorithms overcome the 

limitation of single layer network. With the learning rules, it will lead to a great success 

of multilayer neural networks. A BP algorithm contains both forward and backward 

passes. In the forward pass, the input pattern from the input layer is processed layer by 

layer through the hidden layer and the output layer; the weights will be calculated by 

using the connections between proceed layer and next layer. The state of neurons in one 

layer only influences the state of neurons in the next layer. Moreover, if the desired output 

cannot be obtained in the output layer, it will be transferred to the back pass, the error is 

returned along the original path; by iterating the weights of each neuron, the error will be 

minimized.  

Moreover, the gradient descent is adopted in deep neural networks in order to 

decrease the output errors of the Root Mean Square (RMS) as Eq. (2.3.4), where dj 

represents the desired output of the input pattern, yj represents the output. 



23 
 

𝐸𝑘 =
1

2
∑(𝑑𝑗 − 𝑦𝑗)

2
𝑙

𝑗=1

 (2.3.4) 

Deep neural networks have the capability to reflect any complex nonlinear function, 

which has the ability of self-learning and adaptivity; during the training, it automatically 

extracts “reasonable” solutions by learning the set of examples with correct answers; it 

also adaptively memorizes the weight of networks; artificial neural networks do not have 

a significant impact on the training results even if its local or partial neurons are damaged. 

    However, deep neural networks have a myriad of disadvantages, such as slow 

convergence and local minima. Traditional DNNs are a local search optimization which 

solves a great deal of complicated nonlinear problems. The weights of the neural networks 

are adjusted by using the direction of local improvement, which will cause the algorithm 

to fall in the local extrema. The selection of a structure is too large, the efficiency in 

training is not high, overfitting may occur which cuts off fault tolerance. If the selection 

is too small, the network may not converge. 

In 2006, Hinton set up the concept of deep learning, specifically the method of 

pretraining was used to alleviate the problem of local optimal solution, the hidden layer 

was increased to many layers, which deepen the depth in neural networks. Moreover, 

multilayer neural networks have better learning ability and its training complexity is 

effectively alleviated by using layer-by-layer initialization (Hinton & Salakhutdinov, 

2006).  

Unlike traditional approaches, deep learning (DL) methods are inspired by CNNs 

(ConvNets) which lead to the new era of modern computing. Although deep learning 

methods import video frames as the input data directly, the images will be input into the 

network without feature extraction. Thus, deep learning is regarded as a kind of novel 

methods, the feature maps are generated correspondingly. The feature maps are integrated 

into the algorithm without any interventions, the input of the end-to-end methods is an 

image, the output is classification probability. 
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CNNs as one of the most popular methods at present have been applied to directly 

tackle the original images. There are inherent local patterns in images such as mouth and 

eyes, etc. in a face; therefore, the CNNs are regarded as the combination of digital image 

processing and artificial neural networks. It plays a pivotal role in object detection, object 

recognition, and image segmentation (Ciresan, Giusti, Gambardella, & Schmidhuber, 

2012; Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, & Darrell, 2014; Farabet, Couprie, 

Najman, & LeCun, 2013; Girshick, Donahue, Darrell, & Malik., 2014; Krizhevsky, 

Sutskever, & Hinton, 2012; Karpathy, Toderici, Shetty, Leung, Sukthankar, & Li, 2014). 

CNNs connect both upper and lower layers together through using convolutional kernel, 

a “weight sharing” strategy can make fully use of a group of neurons with the same 

connection weights (LeCun & Bengio, 1995; LeCun, Bottou, Bengio, & Haffner, 1998).  

In CNNs, pooling operation ensures image translation invariance, which makes the 

model not affected by changing the positions. Pooling operation makes the network have 

a larger receptive field, which accepts a larger input. The increase of receptive field will 

allow the network to learn more features.  

The end-to-end model is convolutional neural networks (CNNs or ConvNets); 

compared to traditional methods, the convolution kernel in convolutional layer can be 

used as the feature map extractor. Although each layer needs to be designed by itself, 

there are not additional operations that are required to obtain the feature map. The end-

to-end model eliminates the need for data annotation before each individual learning task 

is completed.  

    In this end-to-end model, a prediction result will be acquired in the end. Compared 

to the predicted result with ground truth, an error will be obtained. This error will be 

transmitted to each layer of the model by using backpropagation, the representation of 

each layer will be adjusted according to this error till the model converges or the 

expectation is reached. Compared to the deep learning and traditional machine learning 

methods, deep learning extract feature itself using its convolution kernels, thus, no extra 

feature extraction process is required, but the traditional machine learning methods 

normally requires several models to work together. 
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For traditional learning, the features extracted from the original data are very 

particular in the image, because the number of image pixels is too large, the dimension is 

very high, which leads to the curse of dimensionality problem. Thus, the difference 

between deep learning methods and the traditional methods is that it is able to directly 

input a two-dimensional image into the model so as to export the classification results at 

the side of output. The advantage is that it does not need complex preprocessing, feature 

extraction, and pattern classification, the parameters needed by the deep neuron network 

are obtained through continuous optimization, the required classification is given in the 

output layer. The performance of this architecture is effective than that of other traditional 

algorithms. Table 2.3.1 shows the summary of two different methods with their 

advantages and disadvantages for human behavior recognition.  

Typical deep learning methods include convolutional neural networks (CNNs or 

ConvNets), deep belief networks (DBN), and autoencoder. A number of layers in a neural 

network directly determine its ability to depict reality by using fewer neurons per layer to 

fit more complex functions. With the deepened neural networks, optimization function is 

more likely to fall into the local optimal, which is deviated from global optimal. Therefore, 

the performance of deep neural networks, trained with the limited data, may not be good 

enough. Meanwhile, with the increased layers of a neural network, gradient vanishing 

turns to be more serious. In order to overcome the gradient vanishing problem, sigmoid 

activation function is substituted by using ReLU, maxout, and other activation functions. 

Thus, deep learning is not only subject to the number of layers, but also dependent on the 

number of training data. 

Most of the state-of-the-art deep learning methods were based on “detection by 

classification” framework, which finds the proposals and conducts the classification for 

each proposal. However, the bounaries of the proposals have been set during the 

clssfication. A single shot action detector (SSAD) was figured out to detect action 

instances in untrimmed videos, which adopts the temporal convolutional layers to skip 

the proposal generation step (Lin, Zhao, & Shou, 2017). Saha et al. came up with a spatio-

temporal detection and classification networks for mulitple concurrent actions in the 
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untrimmed videos. It utilizes two pairs of region proposal networks (RPN) to localise and 

score actions from the original images for further classificaitons (Saha, Singh, Sapienza, 

Torr, & Cuzzolin, 2016). A single shot multi-box detector (SSD) was adopted to achieve 

regression and classification of the detected boxes in each frame, a novel greedy 

algorithm was designed, which can generate multiple action tubes incrementally (Singh, 

Saha, Sapienza,, Torr, & Cuzzolin, 2017). 

Table 2.3.1 The summary of two different methods for human behavior recognition 

 Advantages Disadvantages 

Traditional 

methods 

Easy to be implemented  

Redundant features can be reduced 

before the training. 

Feature engineering (easy to explain 

and understand)  

It does not require GPU acceleration. 

It cannot achieve the real time 

recognition usually. 

It requires several models to 

work together. 

The results may be affected 

by external environments, less 

accurate. 

Deep learning 

methods 

It can achieve real-time recognition. 

It can train the data without additional 

feature extraction. 

The results may not be affected by 

external environments, more accurate. 

It is adaptable and easy to be converted 

(transfer learning). 

It requires a large amount of 

data. 

It requires GPU acceleration. 

It requires more time for 

training. 

Black box (hard to be 

explained and understood) 

Szegedy et al. treated object detection by using deep neural networks as a regression 

problem (Szegedy, Toshev, & Erhan., 2013). Girshick et al. put up a region-based 

convolutional neural network (R-CNN), which took use of the region proposal (Sande, 

Uijlings, Gevers, & Smeulders, 2011) to gain multiple local regions of image, CNNs are 

utilized to grab these features of each region (Girshick, Donahue, Darrell, & Malik., 2014). 

The region proposal is to find out the possible position of the target in the image, the 
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intersection-over-union (IOU) is guaranteed while selecting candidate windows by using 

visual information, such as texture, edge, and color in the image. 

Moreover, the region proposal for R-CNN is implemented by using selective search 

algorithm (Sande, Uijlings, Gevers, & Smeulders, 2011). In order to achieve object 

detection, in general, sliding window is adopted to select all the possible region boxes on 

the image, then generate the feature maps of these boxes by using classification method 

to get all the selected regions, then suppress the output results by using non-maximum 

value.  

However, the disadvantages of this method are apparent. The complexity is too high, 

resulting in a lot of redundant candidate regions. Moreover, it is impossible to take every 

scale into account, the target location is not so accurate and feasible. Thus, selective 

search was suggested which can effectively remove redundant candidate regions and 

greatly reduce the computations. Selective search combines both exhaustive search and 

image segmentation for object recognition, and hierarchy structure for recognition. 

Different from exhaustive search, selective search approach recommends whether the 

useless regions should be deleted and only the regions enclosing possible objects are left, 

which will have time efficiency. 

However, R-CNNs still have the shortages, which require to extract the local regions 

that increase the usage of disk space. Traditional CNNs require fixed size of input images, 

but normalization may stretch the objects, the information may get lost; moreover, most 

of the region proposals may be overlapped with others which extract features from the 

overlapping portions.  

Spatial pyramid pooling networks (SPP-Nets) were adopted to overcome the 

information loss and usage problems of R-CNNs by replacing it with the last pooling 

layer (He, Zhang, Ren, & Sun, 2015). A MultiBox was proposed which trained CNN 

instead of using the same strategy in R-CNN by applying selective search algorithm to 

predict the Region of Interest (ROI) (Erhan, Szegedy, Toshev, & Anguelov, 2014), it can 

perform the single object detection by replacing the confidence with the single class 
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prediction. The shared computation was applied to uplift the speed and accuracy, the 

features are selected with pooling operation having various filter sizes and then connected 

as the input into a fully connected network. The global and local visual features were 

based on SPP-Net structure, SPP-Net is faster than the R-CNN. 

Fast R-CNN (Girshick, 2015) was propounded to improve R-CNN which achieves 

higher mAP (average precision) based on PASCAL VOC2012 (Everingham, Van Gool, 

Williams, Winn, & Zisserman, 2010), it combines convolutional neural network, 

classifier, and bounding box regression into a simple network. Fast R-CNN has the ability 

to update the training process of all network layers through using pooling layers and 

backpropagation. Moreover, Fast R-CNN maps region proposal directly on feature map, 

the image only needs to be fetched once, which greatly cuts off time consuming, softmax 

with a fully connected layer is used to replace SVM and output the final class. A linear 

regression layer parallel to the softmax layer was also added to output the bounding box 

coordinates. Thus, all the required output comes from a single network which diminishes 

the training time. 

The Faster R-CNN was implemented in 2017, which achieves high accuracy and fast 

computational speed compared with previous models. Unlike the R-CNN and Fast R-

CNN reply on selective search algorithm, which is time-consuming. Faster R-CNN 

replaces the region proposal network (RPN) with the selective search method so as to 

share the convolutional features of whole image and produce the feature maps (Ren, He, 

Girshick, & Sun, 2017).  

R-CNN with its associated models belongs to a two stages method (Lin, Goyal, 

Girshick, He, & Dollár, 2017) which generates the region proposal, a CNN is utilized for 

further classification, a number of extended frameworks based on this method have been 

also proposed (He, Gkioxari, Dollár, & Girshick, 2017; He, Zhang, Ren, & Sun, 2016; 

Lin, Dollár, Girshick, He, Hariharan, & Belongie, 2017; Shrivastava, Gupta, & Girshick, 

2016). Different from R-CNN, a one stage method was proposed which applies the 
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algorithm directly to the input image and outputs the class label and corresponding 

locations. 

You Only Look Once (YOLO or DarkNets) was proposed in 2016, which treats 

visual object detection as a regression problem based on end-to-end neural networks. 

Compared with Fast R-CNN, YOLO has a large positioning error and a lower recall rate 

compared with the region proposal-based methods. However, YOLO has a higher 

accuracy for locating and recognizing background, while Fast R-CNN has a high false 

positive rate. The core idea of YOLO is to import a whole picture as the input of the 

neural network, directly return the position of the bounding box and the label of the class.  

YOLO networks have the ability to train loss functions directly corresponding to the 

detection performance, the entire model is trained jointly. YOLO algorithm is : (1) a fixed 

77 grid applied to the input image; if the center of a sample falls on the corresponding 

grid, then the grid will correspond to the position of this object; (2) each grid prediction 

encompasses object position and its confidential information which is formed as a vector; 

(3) the network output layer corresponds to each grid, which is trained as the end-to-end 

model for classification. The loss function of YOLO network contains multiple parts, 

which is shown in Eq. (2.3.5), 

𝐿 = λ𝑐𝑜𝑜𝑟𝑑∑∑1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦 − 𝑦̂𝑖)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ λ𝑐𝑜𝑜𝑟𝑑∑∑1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 −√𝑤̂𝑖)
2
+ (√ℎ𝑖 −√ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

+∑∑1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ λ𝑛𝑜𝑜𝑏𝑗∑∑1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+∑1𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))
2

𝐶∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

(2.3.5) 
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where 1𝑖𝑗
𝑜𝑏𝑗

 denotes the 𝑗 −th bounding box which corresponds to object prediction in 

the 𝑖-th cell, 1𝑖
𝑜𝑏𝑗

 indicates that the object is appeared in the 𝑖 −th cell, λ𝑐𝑜𝑜𝑟𝑑 is a 

constant for the cell with objects, λ𝑛𝑜𝑜𝑏𝑗 is a constant for the cell without objects. 𝑆2 is 

the cell grid. If the grid cell contains an object and the center of an object is also in that 

grid cell, the grid cell will respond for detecting this object. 𝐵 denotes the bounding box 

that each grid cell will be predicted. Each bounding box will be assigned a confidence 

score to output the probability which is predicted by the network. 𝑥, 𝑦  refer to the 

coordinates related to the center of the box to the grid cell, ⁡𝑤, ℎ mean the predict width 

and height which are related to the image. The confidence 𝑐 is the IOU between the 

predicted bounding box and the ground truth box. 

However, the loss function was implemented into YOLO network by utilizing the 

sum-squared error, which makes convergence become worse; meanwhile, it cannot align 

with the maximized average precision correctly. YOLO network contains 24 

convolutional layers and two fully connected layers which is inspired by GoogLeNet that 

is more efficiency for classification (Szegedy et al., 2015; Redmon, Divvala, Girshick, & 

Farhadi, 2016).  

YOLO9000 (YOLOv2) was presented to overcome the limitations of the initial 

version of YOLO, which detects up to 9,000 object classes in real time and improve the 

accuracy and recall of the object location. YOLOv2 applies WordTree to conduct joint 

training for classification, the joint training algorithm was trained for object recognition 

and detection (Redmon & Farhadi, 2017).   

YOLOv2 applies anchor box from Faster R-CNN to predict the coordinates of each 

bounding box. COCO (Common Objects in Context) dataset supports YOLOv2 for object 

detection (Lin, Maire, Belongie, Bourdev, Girshick, & Hays, 2014) and ImageNet dataset 

for object classification (Miller et al., 1990; Russakovsky et al., 2015), compared with 

YOLO, YOLOV2 has been significantly amended in recognition class, accuracy, speed, 

and positioning accuracy.   
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Batch normalization (Ioffe, & Szegedy, 2015) was adopted to all convolutional layers, 

which normalizes the data of all layers to prevent gradient vanishing and gradient 

exploding and increases 2% mAP in YOLOv2. Since there are only convolutional and 

pooling layers in YOLOv2, the input of YOLOv2 is limited to those fixed size images. In 

order to enhance the robustness of this model, YOLOv2 takes advantage of a multiscale 

training strategy, specifically changes the input image size after several rounds of 

iterations during training process. Therefore, by utilizing multiscale training strategy, 

YOLOv2 is adaptive to the images with different sizes and predicts very satisfactory 

results. During our tests, YOLOv2 has been fed with various sizes of images as its input. 

YOLOv3 was proposed to amend YOLOv2, which takes use of logistic regression to 

locate an object based on a bounding box; the logistic regression is applied independently 

to each class; the binary cross-entropy loss is taken to replace the softmax loss so as to 

increase class predictions. Moreover, YOLOv3 adopted the block structure in ResNet and 

predict it from three feature scales which is similar to feature pyramids network (Lin, 

Dollár, Girshick, He, Hariharan, & Belongie, 2017). In YOLOv3, k-means clustering is 

selected, each grid cell in the feature map is able to predict three bounding boxes, the 

prediction outcomes including position of each box, which is defined by the center 

coordinates (tx, ty), box width and height (bw, bh), object prediction, and class predictions. 

The parameters of bounding box prediction are shown as: 

bx = (tx) +cx 

(2.3.6) 

by = (ty) +cy 

𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤 

𝑏ℎ = 𝑝ℎ𝑒
𝑡ℎ 

where bw and bh are the width and height of the bounding box, bx and by indicate the 

position of the predict bounding box. The coordinates (tx, ty) and (tw, th) are generated by 
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using the network. cx and cy are the lengths of the grid cell, pw and ph are the width and 

height of prior bounding box, σ(∙) is used to constrain its possible offset. 

 YOLOv4 was given in 2020 which optimizes the algorithms such as spatial attention 

module (SAM), path aggregation network (PAN) and cross-iteration batch normalization 

(CBN) etc. (Woo, Park, Lee, & So Kweon, 2018; Liu, Qi, Qin, Shi, & Jia, 2018; Yao, 

Cao, Zheng, Huang, & Lin, 2020). The model was trained based on a single GPU and 

owns the advantage of time efficiency. YOLOv4 takes the place of the spatial-wise 

attention by using point-wise attention; moreover, the concatenation was substituted by 

using the original shortcut connection. Afterwards, a Bag of Freebies (BoF) was utilized 

to be associated with a Bag of Specials (BoS) so as to uplift the overall accuracy and 

performance, which encapsulates enlarging the receptive field by using attention 

mechanism, etc.. Moreover, various of new features such as weighted-residual-

connections (WRC), cross mini-batch normalization (CmBN), self-adversarial-training 

(SAT), Mish activation function (Misra, 2019) and Mosaic data augmentation etc. were 

adopted, which shows the promising results on public dataset (Bochkovskiy, Wang, & 

Liao, 2020). 

In recent years, deep learning has made positive progress. The main approaches are 

able to be grouped into two categories. (1) Two-stage approaches, such as R-CNN series. 

The chief idea is to use the selective search or CNN network such as RPN to produce a 

series of sparse region proposals, classify and regress these region proposals. The 

advantage of two-stage approach is highly accurate. (2) One-stage approaches, such as 

YOLO and SSD, the main objective is to carry out intensive sampling uniformly at 

different locations of the image. Multiple scales and aspect ratio have been applied to 

sampling, CNNs extract features directly for classification and regression, the whole 

process only needs one step. Thus, its advantage is obvious, but an important 

disadvantage of uniform dense sampling is that it is difficult to be trained. This is the 

reason why the positive samples and negative samples (background) are extremely 

unbalanced, which results in a slightly low accuracy.  
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The single shot multibox detector (SSD) was proposed in 2017 which is a one-stage 

approach (Singh, Saha, Sapienza, Torr, & Cuzzolin, 2017; He et al., 2017; Huang et al., 

2017). It is much better than YOLO model in balancing the accuracy and computational 

speed in classification. For Faster R-CNN, it first obtains the candidate frame through 

CNN, and then performs classification and regression, and YOLO and SSD can complete 

the detection in one step. SSD is trained to handle the multiple object classes (Erhan, 

Szegedy, Toshev, & Angulelov, 2014), and compare with YOLO. SSD directly detects 

the objects, rather than after the fully connected layer like YOLO. SSD extracts feature 

maps with multiple scales for detection, the large-scale feature maps (lower feature maps) 

are applied to detect small objects, small scale feature maps (upper feature maps) are 

imported to detect large objects. SSD is use of prior boxes with multiple scales and aspect 

ratios which permits the predictions in multiple scales. Thus, SSD and YOLO share the 

same CNN network for detection, but it takes use of multiscale feature maps. The input 

image size of the model is 300×300. SSD selects VGG-16 as the basic convolutional 

network and adds several of convolution layers at the end of VGG-16 to obtain much 

feature maps for object detection.  

Pertaining to a feature map with the size of m×n×p, the convolution kernel having 

the size 3×3 is applied to and generate a value at each pixel location of the given image, 

which is a score of a class or an offset from the default bounding boxes. The core idea of 

SSD is that both lower and upper feature maps will be selected for object detection. The 

feature maps of different sizes are employed in multiscale way. In general, the feature 

maps of CNN network are relatively large, the convolution with stripe = 2 or pooling will 

be used to shrink the size of feature maps. The advantage is that the larger feature map is 

employed to detect smaller target, while the smaller feature map is applied to detect larger 

target. 

    The matching strategy for SSD basically is based on Jaccard index, which matches 

each ground truth with a default bounding box having the largest overlapping, to ensure 

that each ground truth has a corresponding default box; and match each default box with 

any ground truth. As long as the value of Jaccard index is greater than a threshold, a 
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ground truth box may correspond to multiple default boxes. The calculation of Jaccard 

index is given as eq.(2.3.7) 

     𝐽(𝐴, 𝐵) = ⁡
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
⁡ ∈ [0, 1].    (2.3.7) 

The loss function of SSD is defined as the weighted sum of the location loss (los) 

and the confidence loss (conf),   

𝐿(𝑥, 𝑐, 𝑙, 𝑔) = ⁡
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (2.3.8) 

where 𝑁 denotes the number of positive samples of the default boxes which are matched 

to the ground truth boxes. 𝑥𝑖𝑗
𝑝 ϵ{1, 0} is the indicator which means that the 𝑖𝑡ℎ bounding 

box matches to the 𝑗𝑡ℎ ground truth box of category 𝑝. The confidence denotes as 𝑐, 𝑙 

is the predicted box, 𝑔 refers to the ground truth box, and 𝛼 stands for the weight factor 

which is set to 1.0 for the cross validation. 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) is the confidence loss which is 

the softmax loss over the class confidence 𝑐, given as eq.(2.3.9), 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = ⁡− ∑ 𝑥𝑖𝑗
𝑝
log(𝑐̂𝑖

𝑝
) − ∑ 𝑙𝑜𝑔(𝑐̂𝑗

𝑝
)

𝑖𝜖𝑛𝑒𝑔

⁡

𝑁

𝑖𝜖𝑝𝑜𝑠

 

where  ⁡⁡⁡𝑐̂𝑖
𝑝 =

exp(𝑐𝑖
𝑝
)

∑ exp𝑝 (𝑐
𝑖
𝑝
)
 

(2.3.9) 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) refers to the localization loss, the equation as followed: 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘 smooth𝐿1(𝑙𝑖

𝑚 − 𝑔̂𝑗
𝑚)

𝑚𝜖{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

⁡

𝑁

𝑖𝜖𝑝𝑜𝑠

⁡ 

𝑔̂𝑗
𝑐𝑥 =

(𝑔𝑗
𝑐𝑥 − 𝑑𝑖

𝑐𝑥)

𝑑𝑖
𝑤 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑔̂𝑗

𝑐𝑦
=
(𝑔𝑗

𝑐𝑦
− 𝑑𝑖

𝑐𝑦
)

𝑑𝑖
ℎ ⁡ 

⁡𝑔̂𝑗
𝑤 = log (

𝑔𝑗
𝑤

𝑑𝑖
𝑤)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑔̂𝑗

ℎ = log (
𝑔𝑗
ℎ

𝑑𝑖
ℎ)⁡⁡⁡⁡ 

(2.3.10) 
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where the localization loss is a smooth loss L1 (Girshick, 2015) between the predicted box 

𝑙 and the ground truth box⁡𝑔, which are the central coordinate position (𝑐𝑥, 𝑐𝑦) of the 

default bounding box (𝑑), weight (𝑤) and height (h). Moreover, the smooth L1 loss is 

defined as  

smooth𝐿1(𝑥) = {
0.5𝑥2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡|𝑥| < 1
|𝑥| − 0.5⁡⁡⁡⁡⁡⁡⁡⁡otherwise.

 (2.3.11) 

For one-stage approaches, SSD shows that it is faster than YOLO in real-time 

detection, and the precision of SSD is higher than the Faster R-CNN based on PASCAL 

VOC and COCO datasets. However, the basic size and shape of the prior box in the SSD 

network cannot be gained directly through learning. The recall rate of SSD network for 

small objects does not reach the performance of Faster R-CNN, because the low-level 

feature convolution layer is few, which leads to the issue of insufficient feature extraction.  

There are improvement and enhancement for SSD network, such as the 

Deconvolutional SSD (DSSD) to add the deconvolutional layers and increase the mAP 

based on PASCAL VOC and COCO datasets (Fu, Liu, Ranga, Tyagi, & Berg, 2017). The 

Rainbow SSD (R-SSD) applies the rainbow concatenation method to merge the features 

from multiple layers which solves the problem not only for repeating the detected boxes 

existing in SSD algorithm, but also for small object detection (Jeong, Park, & Kwak, 

2017). An attention mechanism was proposed to identify the regions and achieve a good 

result (He, Huang, He, Zhu, Qiao, & Li, 2017). A PyramidBox was proposed to handle 

with face detection problem (Tang, Du, He, & Liu, 2018). A one-stage framework that 

combines the advantages of fine tuning and pretraining was proposed which effectively 

transfers semantic information of low and high levels to improve the accuracy (Wang, 

Anwer, Cholakkal, Khan, Pang, & Shao, 2019). 

In recent years, with the increased capacity of computing devices, deep neural 

networks (DNNs) gained a major attention to attain a variety of computer vision tasks 

(Lu, Shen, Yan, & Bacic, 2017; Gu, Yang, Yan, Li, & Klette, 2017; Zhang, & Yan, 2018; 

Shen, & Yan, 2018; Al-Sarayreh, Reis, Yan, & Klette, 2018; Liu, Nguyen, & Yan, 2019; 
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Ji, Yan, & Klette, 2019; Song, He, Yan, & Nand, 2019). DNNs own multiple layers with 

the pretrained method to alleviate the problem of local optimal solution, the difference 

between ANNs and DNNs is the hidden layer, DNNs expand hidden layers to many layers, 

namely, deep learning (Hinton, Osindero, & Teh, 2006).  

Moreover, there are still other networks which have the possitive results in 

classification. Lin et al. proffered a Network in Network (NIN) which extracts more 

complex features by adding the micro multi-layer perceptrons into the filters of the 

convolutinal layers (Lin, Chen, & Yan, 2014). Ladder Networks (Pezeshki, Fan, Brakel, 

Courville, & Bengio, 2016; Rasmus, Berglund, Honkala, Valpola, & Raiko, 2015) 

brought lateral connections in the autoencoder, resulting in a positive accuracy on semi-

supervised learning. Wang et al. put forward a Deeply-Fused Nets (DFNs) which 

imporves information flow by mixing intermediate layers in the base networks (Wang, 

Wei, Zhang, & Zeng, 2016). By enhancing the network with paths, the loss is minimized 

so as to improve image classification (Zhang, Lee, & Lee, 2016). 

Deep learning methods rely on ANNs, such as convolutional neural networks 

(CNNs), R-CNNs, Fast R-CNNs, Faster R-CNNs, single shot multi-box detector (SSD), 

and You Only Look Once (YOLO). Moreover, the previous deep learning methods were 

well studied in different domains. The region proposal was proposed in 2017 which shows 

high precision in object detection (Ren, He, Girshick, & Sun, 2017). Faster R-CNN based 

on selective search leads to exceptional achievement in a series of competitions (Ren, He, 

Girshick, & Sun, 2017; He, Zhang, Ren, & Sun, 2016). Moreover, deep learning 

approaches gain the end-to-end process along with higher classification confidences 

which also show an invariant to illumination, pose, etc. (LeCun, Huang, & Bottou, 2004). 

In 2015, Ng et al. proposed a deep neuron network is pretrained by using AlexNet or 

GoogleLeNet based on imageNet to extract frame-level features, and import frame-level 

features and optical flow features into LSTM for training so as to attain the classification 

up to 88.6% accuracy based on UCF-101 dataset (Ng, Hausknecht, Vijayanarasimhan, 

Vinyals, Monga, & Toderici, 2015). 
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Nowadays, most of deep learning methods require either deepening the depth or 

widening the width of deep networks so as to improve the accuracy (He, & Sun, 2015), 

which have shown good performance compared with the traditional machine learning 

methods. However, as the number of hyperparameters rising such as channels, filter size, 

etc., the computational costs of deep learning network will be also ramped up. In most of 

these cases, deepening the deep learning model may not be able to solve the problem 

completely, which will encounter the overfitting or global minimization problem.  

VGG network (Simonyan, & Zisserman, 2014) has been tested to find out how deep 

the deep neuron networks can be improved so as to continuously ramp up the 

classification accuracy. The previous work shows that more complex deep neural network 

with more parameters should have stronger representation ability. According to this basic 

rule, deep neuron networks have been developed from the seven layers AlexNet 

(Krizhevsky, Sutskever, & Hinton, 2012) to 16/19 layers VGG network (Simonyan, & 

Zisserman, 2014), and to the later 22 layers GoogLeNet (Szegedy et al., 2015). However, 

by increasing the number of convolution layers after the depth of CNN reaches a degree 

of depth, it not only could bring further improvement in classification, but also might lead 

to slow down the training, furthermore, perhaps bring in a worse classification accuracy 

based on the same test set. Moreover, after eliminating the problems of model overfitting 

provided giving small datasets, we find that the classification accuracy may still drop off 

while we deepen extra depth of the deep neural networks comparing with those shallow 

neuron networks.  

After raised the number of layers in VGG network, it starts eliminating the 

classification performance. Thus, ResNet was inspired by using highway network 

(Sirvastava, Greff, & Schmidhuber, 2015) and the gate unit in LSTM (Hochreiter, & 

Schmidhuber, 1997). ResNet takes use of the multiple layers to learn the residual 

representation between the input and the output, instead of parameterized layers to 

directly learn the mapping between input and output (He, Zhan, Ren, & Sun, 2016a). The 

core idea of ResNet is to bring in the concept “identity shortcut connection”, which skips 

one or more layers directly, the residual learning unit establishes a direct correlation 
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channel between the input and the output throughout the identity mapping, so that the 

parameterized layer can concentrate based on learning the residual between the input and 

the output.  

It is easier to learn residuals directly by using generally parameterized layers than to 

learn the mapping between inputs and outputs in terms of convergence rate, higher 

classification accuracy is able to be achieved by using more layers.  

 The output of residual unit is obtained by adding the concatenated output and input 

elements of multiple convolutional layers so as to ensure that the output and input 

elements of the convolutional layer are the same. By cascading these structures, a residual 

network is obtained. Moreover, ResNet has the following characteristics: (1) The network 

is thinner, which controls the number of parameters; (2) the number of feature map is 

progressively layer-by-layer to ensure the output feature expression ability; (3) The 

pooling layer uses a large number of downsampling operations to improve propagation 

efficiency.  

   In the neural network for calculating gradient optimization based on backpropagation 

method, since chain rule has been employed in the backpropagation to seek the gradient 

of hidden layer, the gradients of the shallow hidden layers will turn up severe attenuation, 

which is the source of gradient vanishing. This problem is particularly serious for sigmoid 

activation function, so later, deep neural networks have to use ReLU activation function 

to alleviate this problem. However, even ReLU activation function cannot avoid gradient 

vanishing problem brought by hundreds or thousands of times of continuous 

multiplications under the condition of extreme depth due to the scalar relationship 

between unit outputs of the network. By broadening the width of ResNet, it can 

outperform a deep ResNet with 1,001 layers and have the positive results based on CIFAR 

benchmarks (Zagoruyko, & Komodakis, 2016). After a long-standing investigation, a 

deep residual network was set by adopting identity mapping (He, Zhan, Ren, & Sun, 

2016b) to solve the gradient vanishing problem. Because of batch normalization, ReLU 

and other methods have limited the mitigations for this level of gradient vanishing. 



39 
 

Recent work shows that if a convolutional network has shorter connections between 

the layers from the input to the output, then the network can be trained properly, the result 

will be much accurate and efficient. Huang et al. proposed a dense convolutional network 

(DenseNet) connecting each layer in a feedforward manner (Huang, Liu, Van Der Maaten, 

& Weinberger, 2017). In DenseNet, there are direct connections between two layers, the 

number of direct connections in this L-layer network is 
𝐿(𝐿+1)

2
. Each layer utilizes the 

feature maps of all the previous layers as the input, its own feature maps are treated as the 

input of all subsequent layers. In order to ensure the maximum information flow between 

network layers, DenseNet directly connects all layers together.  

Moreover, in order to maintain the feedforward characteristic, each layer gets extra 

input from the proceed layer and passes its feature map to the next layer. Compared with 

ResNet, DenseNet does not combine features by summing up them before they pass to 

the layer, but mingle features by connecting them. Therefore, the lth layer (excluding the 

input layer) will have l inputs. These inputs are the feature information extracted by using 

all proceed layers.   

As we know, for the convolution networks, the output of lth layer will be the input of 

the (l+1) th layer (Krizhevsky, Sutskever, & Hinton, 2012), the transition is presented as 

xℓ =⁡Ηℓ(xℓ−1)                        (2.3.12) 

where 𝑥0 is defined as the input of the entire network structure. The network consists of 

L-layers. 𝛨ℓ(·)⁡denotes the operation of each layer which is represented by a nonlinear 

transformation, where l represents the lth layer. 𝛨ℓ(·)⁡is treated as a compound operation 

defined by batch normalization, ReLU activation function, pooling, and convolution 

operations. Simultaneously, the output of the l-th layer is defined as 𝑥ℓ. ResNet (He, 

Zhang, Ren, & Sun, 2016) propounded the identity function, a skip-connection bypasses 

the nonlinear transformation, the layer transition is shown as 

xℓ =⁡Ηℓ(xℓ−1) + xℓ−1  (2.3.13) 
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    The advantage of ResNet is that the gradient is directly transmitted from a layer to 

its previous layer through the identity function. However, the identity function and the 

output of  𝛨ℓ(·)⁡ are combined by summation, which hinders the information flow in 

the network. 

Therefore, in order to further improve the flow of information between layers, Huang 

et al. proffered direct connections from any proceed layer to all next layers (Huang, Liu, 

Van Der Maaten, & Weinberger, 2017), the layer transition is presented as 

xℓ =⁡Ηℓ[x0, x1…xℓ−1] (2.3.14) 

where [x0, x1…xℓ−1] denotes as the feature maps concatenated and produced in layers 

0, 1, …, ℓ − 1. 

Because there is no need to retrain the redundant feature maps, this dense connection 

model requires fewer parameters than convolutional networks. The feedforward 

architecture is viewed as an algorithm with the state that is passed from one layer to 

another. Each layer reads the state from its proceed layer and writes it to the next layers. 

It changes state, but passes information that needs to be retrained. The dense network 

architecture clearly distinguishes between information added to the network and 

information retrained. In addition to have fewer parameters, another advantage of 

DenseNet is that it improves the information flow and gradients of the entire network, 

which makes the network easy to be trained. Each layer has direct access to the gradients 

from the loss function and the original input signal. (Lee, Xie, Gallagher, Zhang, & Tu, 

2015). 

 DenseNet allows a layer to access feature maps from all of the proceed layers. It 

naturally scales to hundreds of layers without any optimization difficulties. All layers 

hold the weights within the same block, the features extracted from very early layers are 

supplied directly to very deep layers throughout the same dense block. Eventually, 

DenseNet produces a consistency of accuracy without any degradation or overfitting as 

the number of layers and associated parameters are raised.  
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Moreover, in order to dissolve the problem of overfitting and trim down the 

parameters of deep neuron networks. Xception (Chollet, 2017) and ResNeXt (Xie et al. 

2017) were proposed to increase the cardinality. They show empirically that cardinality 

not only saves the total number of parameters, but also is expressive than the depth and 

width. The attention has been studied which implies not only where to focus, but also 

how to improve the representation of interests (Mnih, Heess, & Graves, 2014; Xu et al., 

2015; Jaderberg, Simonyan, & Zisserman, 2015). 

Xie et al. suggested a highly modularized deep learning network (ResNeXt) for 

image classification. It raises up accuracy without ramping up the complexity of the deep 

learning method, meanwhile it effectively cuts off the number of hyperparameters (Xie 

et al. 2017). The ResNeXt was motivated from the idea of VGG stacking blocks of the 

same shape and the split-transform-merge idea of the Inception model, which holds robust 

scalability and is able to meliorate the accuracy without substantially altering the 

complexity of the model. ResNet model is stacked by using the basic residual modules.  

ResNeXt is similar to Inception module (Szegedy et al., 2015), they both follow the 

“split-transform-merge” paradigm. However, in ResNeXt, the outputs of different paths 

are combined by addition operations, in Inception module, they are deeply concatenated. 

Another difference is that each path in Inception module has bias from each other, while 

in the ResNeXt module, all paths follow the same topology. It replaces the three-layer 

convolution block of original ResNet model by using a parallel stack of blocks with the 

same topology, which uplifts the accuracy without significantly raising the number of the 

parameters. 

Simultaneously, the hyperparameters are reduced because of the topological structure 

of ResNeXt model. Moreover, cardinality in ResNeXt is the size of the set of 

transformation and an essential factor to the dimensions of depth and width. By adopting 

ResNeXt model, the training error is much lower compared with the ResNet parameters. 

Moreover, by extending the cardinality, the model is much efficient compared with only 

extending the network depth or width on the ResNet model, thus dips 1.6% error rate. 
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On the one hand, Convolutional Neural Networks (CNN) comprise of a series of 

convolution layers and pooling layers. We apprehend the characteristics of the input 

image from the global receptive field so as to precisely savvy the image. On the other 

hand, the current convolutional network carries out convolutional operations in 2D space, 

which is regarded as the networks that model spatial and channel-wise information within 

relevant receptive field. A good deal of work embarks on convolutional networks for 

digital image processing from the spatial domain. For instance, embedding multiscale 

information in Inception mode (Szegedy et al., 2015) was offered to aggregate visual 

features of verity of sizes of receptive fields so as to snatch a better performance; attention 

mechanism was brought in the spatial domain which gains positive results.  

A simple and effective attention module for feedforward convolutional neural 

networks was set forth in 2018 which is called Convolutional Block Attention Module 

(CBAM). In order to make the performance of CNN model better, the focus of recent 

work is on three important aspects: Depth, width and cardinality. ResNet makes it possible 

to establish very deep networks, while GoogLeNet shows that the width is another 

important factor in improving model performance. In addition, Xception and ResNeXt 

increase the cardinality of the network. Our experience shows that cardinality not only 

saves the total number of parameters, but also produces a stronger representation ability 

than depth and width. Moreover, the module is able to integrate into any CNN 

architectures seamlessly with negligible overheads and is trainable in the end-to-end way 

along with the base CNNs.  

The goal of attention mechanism is based on essential features and suppress 

unnecessary features (Woo et al. 2018). The structure of channel attention module utilizes 

both max pooling and average pooling with a shared network composed of multilayer 

perceptron with one hidden layer. The input feature map passes through global max 

pooling and global average pooling based on its width and height respectively, and goes 

through the shared MLP network. The output features are based on elementwise, and 

activated by using sigmoid function to generate the final channel attention feature map. 

The channel attention is computed as follows 
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𝑀𝑐(𝐹) = ⁡𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹))⁡+ 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) 

= 𝜎 (W1 (W0(F𝑎𝑣𝑔
𝑐 )) +W1(W0(F𝑚𝑎𝑥

𝑐 )))    (2.3.15) 

where Favg
c  and Fmax

c ⁡denotes average pooling and max pooling in the channel attention 

module, W1  and W0  are the weights which share both input and ReLU activation 

function by using the W0. 

The SKNet was proposed in 2019, SK convolution kernels with different kernels are 

presented to implement receptive field of neurons, which encloses three operators: Split, 

fuse, select. In the standard convolution network, the size of the receptive field of neurons 

in each layer is the same. In neuroscience, the size of receptive field is constructed by 

using a stimulation mechanism. The method makes CNNs adjusting the size of their 

receptive field adaptively and competently for the input information. There are many 

branches, the size of convolution kernel of each branch is different. Finally, convolution 

kernels with various sizes are fused by using softmax function. The attention models 

produce a diversity of receptive fields, the multiple SK units are stacked into the SKNet.  

The split operator generates multiple paths with various kernel sizes which 

correspond to different RF (receptive fields) sizes of neurons. The fuse operator combines 

and aggregates the information from multiple paths to obtain a global and comprehensive 

representation for selection weights. The select operator aggregates the feature maps of 

differently sized kernels according to the selection weights. 

 CNN is good at capturing the existence of features, because the convolution structure 

was designed for this purpose. However, CNN is unable to explore the relationship 

between each feature attributes, such as relative positions, size, and direction of the 

feature etc. Thus, Sabour et al. firstly proposed a new deep learning network that is much 

effective for image processing, which called capsule network (CapsNet) (Sabour, Frosst, 

& Hinton, 2017). It combines the advantages of CNN structure and takes into account the 

relative position, angle and other information that are missing from the CNN, thereby 
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improving the recognition effect. The CapsNet structure contains two main components, 

which are primary capsule and digital capsule.  

 Capsule is a group of neurons whose input and output vectors represent the 

parameters of a specific type like the probability of occurrence of objects, conceptual 

entities, etc. It took use of the length of input and output vectors to represent the 

probability of the existence of the entity, the direction of a vector represents the 

instantiation parameters. The capsules at the same level predict the instantiation 

parameters of higher-level capsules through the transformation matrix. The higher-level 

capsules become active, if the multiple predictions are consistent. The activity of the 

neurons in an active capsule represents the various attributes of the specific entities that 

are appearing in the image, which contains the parameters, such as posture (position, size, 

direction), deformation, speed, reflectivity, color, texture, etc. The lengths of the output 

vectors represent the probability of an entity, its range is between [0, 1]. A nonlinear 

function called “squashing” was proposed to ensure that the length of the short vector is 

reduced to almost zero, while the length of the long vector is compressed. The following 

equation is the expression of the non-linear function 

V𝑗 =
‖S𝑗‖

2

1 + ‖S𝑗‖
2

S𝑗

‖S𝑗‖
 (2.3.16) 

where V𝑗  represents the vector output of capsule 𝑗, S𝑗 denotes the total input. Moreover, 

the total input S𝑗 is a weighted sum over all predicted vectors from the capsules, which 

acquired by multiplying the vector output u𝑖  from capsule in the layer below by the 

weight matrix W𝑖𝑗.   

S𝑗 =∑𝑐𝑖𝑗𝑢̂𝑗|𝑖
𝑖

 (2.3.17) 

where 𝑐𝑖𝑗 represents coupling coefficients, which are updated and determined iteratively 

by the dynamic routing process.  
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For traditional neural networks, it is basically consisting three different layers, which 

includes input layer, hidden layer, and output layer. The weight is connected between 

relevant layers, the nodes between these layers are not connected. Moreover, the final 

output is controlled by using activation function, which is predetermined. From the 

artificial neural networks to the convolution neural networks, only one input is processed, 

the proceed input and the next input are completely irrelevant. 

In order to resolve this problem, recurrent neural networks for processing the 

sequence data (RNN) was investigated in various research areas (Sutskever, Martens, & 

Hinton, 2011; Sutskever, Vinyals, & Le, 2014; Graves, & Jaitly, 2014). 

Hopfield network is a neural network with a single layer fully connected to each other. 

Each neuron is an input as well as an output. Each neuron in the network transmits its 

output to all other neurons through the connection weight, at the same time, receives the 

information transmitted by using all other neurons, Hopfield network is applied to solve 

combinatorial optimization problems, which is the prototype of the earliest RNN 

(Hopfield, 1982). 

The basic neural network only establishes the weight connection between layers. For 

RNN, the current output of a sequence is related to the previous output. The specific 

expression is that the network will remember the previous information and apply it to the 

calculation of the current output. Thus, the nodes between the hidden layers are no longer 

disconnected but connected, the input of the hidden layer includes not only the output of 

the input layer but also the output of the previous hidden layers.  

 The parameters in recurrent neural network are shared at different times. In order to 

convert the current state to the final output, the recurrent neural network needs another 

fully connected neural network to complete this process. The parameters in the fully 

connected neural network for output are consistent. The output of the recurrent neural 

network is defined as 

𝑂𝑡 = ⁡𝜎(𝑤𝑖𝐼𝑡 + 𝑢𝑖𝑂𝑡−1)                    (2.3.18) 
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where 𝜎 (·) represents the nonlinear functions, 𝑤𝑖  and 𝑢𝑖  are network parameters, 

which are used to control the relative importance of current and past information. 𝐼 

denotes as the input, 𝑂  refers to the output. Moreover, the pseudo codes of RNN 

algorithm are simply shown as: 

Algorithm 2.3.1 The output of RNN 

Input: The input 𝑂 in time 𝑡  

Output: The output 𝐼 in time 𝑡 

For 𝑡 from 1 to 𝑇 do 

    𝑎𝑡 ←⁡𝑤𝑖𝑡𝐼𝑡 

⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑡 ←⁡𝑢𝑖𝑡𝑂𝑡−1 

    𝑂𝑡 ← ⁡𝜎(𝑎𝑡 +⁡𝑏𝑡) 

End for 

    The input of each recurrent unit is composed of input 𝐼𝑡 at time t and the input 𝑂𝑡−1 

at time t-1. The new output representation is calculated by transferring layers in the 

recurrent neural network. RNN includes one-to-one, one-to-many, many-to-one, and 

many-to-many. Moreover, it turns up in the tasks such as music generation, sentiment 

classification, name entity recognition, machine translation etc. The activation functions 

of RNN are sigmoid function, hyperbolic tanh function, and ReLU function. The loss 

function of RNN is a sum of all losses,  

𝐿(𝑂̂, 𝑂) = ∑ 𝐿(𝑂̂𝑡, 𝑂𝑡)
𝑇𝑂
𝑡=1 ⁡.                    (2.3.19) 

 The Back-Propagation Through Time (BPTT) algorithm (Werbos, 1990) is to train 

the RNNs. In fact, the essence is the BP algorithm, but RNN tackles time series, so it is 

temporal-based backpropagation. The idea of BPTT is as same as that of BP algorithm, 

which keeps searching for better points along the negative gradient direction of 

parameters to be optimized till convergence. The disadvantage of RNNs is that during 
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training, it may face the gradient vanishing problem. When the time span is large, the 

gradient of backpropagation will be getting small when we adopt sigmoid or hyperbolic 

tanh as the activation function, result in gradient vanishing. 

 With regard to recurrent neural networks, the state is transmitted from front to back 

in one direction. However, the output of current time is related to the proceed state and 

the next state. Therefore, the extension of RNN is proposed to solve problem (Schuster, 

& Paliwal, 1997). The bidirectional recurrent neural network is composed of two 

unidirectional recurrent neural networks, whose output is determined by using states of 

the two networks. Moreover, at a given time,⁡the input is related to two opposite recurrent 

neural networks, the output is determined by using two unidirectional recurrent neural 

networks. However, bidirectional RNN needs whole sequence to appear before 

processing, but it can't proceed before receiving the sequence.  

 Moreover, in order to enhance the expressive power of bidirectional RNN model, the 

loop at each hidden layer is allowed to be executed multiple times. Deep recurrent neural 

network replicates the structure of recurrent state multiple times at each hidden layer. The 

parameters in the loop of each hidden layer are the same. A multi-dimensional RNN 

(MDRNN) replaces a single recurrent connection with multiple recurrent connections to 

unfold the RNN so as to handle the multi-dimensional data, hence, RNN is applied to 

digital image processing and digital video processing, and avoid scaling problems 

(Graves, Fernández, & Schmidhuber, 2007). Moreover, an attention mechanism in RNN 

is proposed to achieve the image classification (Mnih, Heess, & Graves, 2014). Bahdanau 

et al. adopted the attention mechanism to perform the translation and alignment 

simultaneously in machine translation (Bahdanau, Cho, & Bengio, 2015).  

    Two attentional mechanisms are proposed which enclose the global mechanism and 

local mechanism for machine translation, our experimental results show that local 

attention is better than global attention (Luong, Pham, & Manning, 2015). Based on 

previous studies, Yin et al. firstly implemented the attention mechanism in CNNs (Yin, 
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Schütze, Xiang, & Zhou, 2016). An end-to-end recurrent attention model (RAM) is 

achieved the pedestrian attribute recognition (Zhao, Sang, Ding, Han, Di, & Yan, 2019). 

 If the parameters of model are too many and the training samples are too few, the 

trained model is easy to produce the phenomenon of over fitting. Thus, Dropout  (Hinton, 

Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012; Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014) effectively alleviated the occurrence of 

overfitting and achieved the effect of regularization in recurrent neural networks. While 

dropout as a kind of tricks has been applied for training deep neural network. In each 

training batch, by omitting half of the feature detectors (let half of the hidden layer node 

value be zero), the overfitting is significantly reduced. In RNN, dropout exists only 

between hidden layers of the recurrent structure, not between the same hidden layer of 

the recurrent structure, from the time 𝑡 − 1 to time 𝑡, recurrent neural network will not 

be involved in dropout, but in the same time 𝑡.   

 As a powerful multilayer neural network model, RNN has the long-term 

dependencies of the model on time. Because of gradient explosion and gradient vanishing, 

this limitation leads to the unstable variation of the errors in the process of model training. 

Thus, in order to utterly solve the problem of gradient vanishing, Hochreiter and 

Schmidhuber were firstly proposed long short-term memory (LSTM) (Hochreiter, & 

Schmidhuber, 1997). LSTM embraces input gate, forget gate, and output gate. Gers et al. 

remedied the LSTM with forget gate, the network can purge unnecessary information and 

establish peephole connections (Gers, Schmidhuber, & Cummins, 2000; Gers, & 

Schmidhuber, 2001). The traditional LSTM replaces a hidden layer in RNN with a more 

complex structure, which called memory block.  

 In LSTM, gate as the fully connected layer, its input is a vector, its output is a real 

vector between [0, 1], which is controlled by using sigmoid function. Cell represents the 

current state of the memory block, which corresponds to the neurons of the hidden layer 

in the original RNN. For the input gate, it determines the input value 𝑥 of the current 

time 𝑡 which passes through to cell state 𝐶. The forget gate determines the cell state 𝐶 
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of the time 𝑡 − 1 which is reserved to the current time 𝑡. The output gate is controlled 

by using the cell state 𝐶 of the current time 𝑡 which exports the current output value ℎ 

of LSTM at current time 𝑡. Generally, for input gate, output gate, and forget gate, the 

sigmoid function is adopted as the activation function. For input and cell, hyperbolic tanh 

function is offered as the activation function. 

At time 𝑡, there are three inputs of the LSTM, including the input value 𝐼 of the 

current time 𝐼𝑡, the output value ℎ of LSTM at the previous time ℎ𝑡−1, the cell state at 

the previous time 𝐶𝑡−1. Two outputs of the LSTM are acquired, including the output 

value ℎ of LSTM at the current time ℎ𝑡 , the cell state at the current time 𝐶𝑡 . The 

definition of each parameter was given as: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

(2.3.20) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀⁡𝜎(𝑊𝑐𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝑐) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) 

where 𝑊,𝑈, 𝑏  represents the weight and bias, respective, which control the weight 

related to the input gate, 𝜎(·) denotes the sigmoid function, 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 stands for the input 

gate, forget gate, and output gate, ℎ𝑡 means the output; 𝑐𝑡 represents the cell state at 

the time 𝑡; ⨀ is the element-wise product. 

    LSTM uses “Truncated BPTT” for training process. The gradient of other parts will 

be truncated, which will not be backpropagated to the memory block of the previous 

moment. In 2005, a Full Gradient BPTT method is proposed to train the LSTM, which 

shows that the bidirectional networks are more effective than others, the result was more 

accurate than RNN (Graves, & Schmidhuber, 2005). Greff et al. analyzed the eight kinds 

of LSTM deformations, the results show that none of the eight deformations on the 
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original LSTM can significantly improve the performance of LSTM, it is proved that the 

forget gate and the output activation function are the most important components (Greff, 

Srivastava, Koutnik, Steunebrink, & Schmidhuber, 2016).  

    The original LSTM has not the forget gate and peepholes (Gers, Schmidhuber, & 

Cummins, 2000). Gers et al. set forth the peepholes for precise time control, which 

extended the peephole connections in cells to other gates, which makes it easier for LSTM 

to distinguish time series (Gers, & Schmidhuber, 2000). Gers et al. put forward full 

gradient LSTM, the method makes the gradient of LSTM available, stable, and reliable 

(Graves, & Schmidhuber, 2005). 

 In 2014, an RNN encoder-decoder model is proposed by adopting the gated recurrent 

unit (GRU) to achieve different tasks (Cho, Merrienboer, Gulcehre, Bougares, Schwenk, 

& Bengio, 2014). The model contains two RNNs, one encodes the sequence into a vector 

representation of a fixed length, the other decodes the encoded vector representation into 

another sequence. Moreover, the length of the two sequences is different.  

GRU chiefly made two changes based on LSTM: (1) GRU has two different gates 

which combines forget gate and input gate into a single gate called update gate, in order 

to control the amount of data that is retained in the previous memory at the current time; 

another gate is called reset gate, which controls how much past information to forget. (2) 

GRU omits the memory cell that performs linear renewal, but takes use of the gating 

directly in the hidden cell to perform linear renewal.   

The input and output of GRU structure are as same as those of traditional RNN, where 

the current input of 𝑥𝑡 and the hidden state ℎ𝑡−1 are passed through the previous node, 

the relevant information of the previous node will be sent to the GRU. By combining both 

𝑥𝑡 and ℎ𝑡−1, GRU will get the output 𝑦𝑡 of the current hidden node and the hidden state 

ℎ𝑡 which will be passed to the next node. The definition of each parameter is 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (2.3.21) 
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𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ℎ𝑡−1) + 𝑏ℎ) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ̂𝑡 + 𝑧𝑡 ⊙ℎ𝑡−1 

where 𝑟 and 𝑧 denote the reset gate and update gate, 𝑊,𝑈, 𝑏 represent the weight and 

bias, 𝜎(·) stands for sigmoid function, which transforms the data to the interval (0, 1), 

𝑥𝑡, ℎ𝑡 represent the input and output vectors, ℎ̂𝑡 means the candidate activation vector. 

For updating gate 𝑧, the range is within interval (0, 1.0), which is closer to 1.0, the more 

data will be represented in memory, the closer it tends to 0, the more forgotten will be 

represented. 

 Compared with LSTM, GRU only has two gates and is similar to LSTM, where 

LSTM is also designed to capture the long-term dependencies. Moreover, the structure of 

GRU is similar to the traditional RNN. In LSTM, the output gate is to control the cell 

memory and transfer data into the next unit. GRU directly transfers the information to the 

next unit without the control of cell memory and apply the reset gate to control the 

previous information. 

Thus, the main differences between LSTM and GRU are: (1) LSTM has three 

different gates, but the GRU only has two different gate; (2) LSTM contains the cell 

memory, the GRU does not, which directly calculates the outputs; (3) the update gate in 

GRU is similar to the fusion of the input gate and forget gate in LSTM. Table 2.3.2 shows 

the advantages and disadvantages of these three methods which are trained with the time 

series data. 

MLP contains three different layers, the input feature vector gets the output layer 

through hidden layer transformation, the classification result is obtained from the output 

layer. The activation function such as sigmoid function or hyperbolic tanh function are 

used to simulate the response of neurons, the backpropagation algorithm is used in the 

training algorithm (Werbos, 1990). However, with deepening the depth of neural network 
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layers, optimization function is more and more likely to fall into the local optimal solution 

and may raise gradient vanishing problem. In order to overcome the gradient vanishing 

problem, activation functions such as ReLU and Maxout replace sigmoid, which forms 

the basic form of DNNs. In the structure of fully connected DNNs, the lower layer 

neurons and all the upper layer neurons form a connection, which lead to the expansion 

of the number of parameters. Thus, CNNs were proposed to use weight sharing, RNN 

was suggested to deal with sequence data. 

Table 2.3.2 The advantages and disadvantages of different methods for sequence data 

 Advantages Disadvantages 

RNN 

Processing the sequence data 

Processing inputs of any 

length 

Sharing the weights across the 

time steps 

The computation is slow. 

The results may be affected by gradient exploding 

and gradient vanishing; 

LSTM 

It can fit the sequence data. 

Solve the problem of gradient 

vanishing. 

Capture the long-term 

dependencies. 

More robust 

Not conducive to parallelization 

The calculation is time-consuming. 

Gradient vanishing when sequence data is large 

GRU 

It has less parameters. 

It has the faster convergence. 

Gradient vanishing when sequence data is large. 

Poor expression performance when sequence data is 

large. 

The fully connected LSTM does not take into consideration of spatial correlation and 

encompasses a wreath of redundant spatial data. ConvLSTM structure for precipitation 

not only establishes temporal relations in LSTM, but also describes local spatial features 

in CNN. Moreover, ConvLSTM is better than LSTM in the aspect of finding 
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spatiotemporal relations (Xingjian, Chen, Wang, Yeung, Wong, & Woo, 2015), the 

ConvLSTM is well investigated in gesture recognition, human behavior recognition, 

image and text classification etc. (Zhu, Zhang, Shen, & Song, 2017; Luo, Liu & Gao, 

2017; Zhang, Zhu, Shen, Song, Afaq Shah, & Bennamoun, 2017; Liu, Zhou, Hang, & 

Yuan, 2017; Breuel, 2017; Si, Chen, Wang, Wang, & Tan, 2019). The equation of 

ConvLSTM is shown as  

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝜒𝑡 +𝑊ℎ𝑓 ∗ ℋ𝑡−1 +𝑊𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓) 

(2.3.22) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝜒𝑡 +𝑊ℎ𝑖 ∗ ℋ𝑡−1 +𝑊𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝜒𝑡 +𝑊ℎ𝑜 ∗ ℋ𝑡−1 +𝑊𝑐𝑜 ∘ 𝐶𝑡 + 𝑏𝑜) 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ ⁡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝜒𝑡 +𝑊ℎ𝑐 ∗ ℋ𝑡−1 + 𝑏𝑐) 

ℋ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

where 𝜒 and 𝐶 denote the inputs and the cell outputs, ℋ stands for the hidden state; 

𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 represent the forget gate, input gate and output gate of the ConvLSTM, 

which are 3D spatiotemporal relationship reflected in rows and columns, ∗ refers to the 

convolution operator, ∘ means the element-wise production. 

2.4 Human Behavior Recognition in Deep Learning 

Human behavior understanding refers to analyze and recognize human motions, and 

describes it by using natural language. A sequence of motion pictures is considered as the 

traversal process of these static actions. The joint probability of traversal process is 

calculated, its maximum value is taken for classification. Gesture recognition is regarded 

as a part of behavior recognition was also studied in this research, it is a cooperative 

research field which is related to pattern recognition, computer vision, etc. The term of 

sign language recognition refers to the whole process of tracking human gestures, 

recognizing the representations, and converting them into semantically meaningful 

commands (Rautaray & Agrawal, 2015; Lu, Yan, & Nguyen, 2021). Traditional 
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approaches for human behavior recognition require the detection methods at first to find 

the region of interest (ROI).  

    In terms of behavior recognition, the focus of early research work was on treating 

human body as a geometric model (Aggarwal & Cai , 1997), such as stick-figure model 

(Guo, Xu, & Tsuji, 1994), cardboard person model (Aggarwal, Cai, Liao, & Sabata, 1997), 

and 3D cylinder model (Rohr, 1994). A star skeleton model was proposed, which 

extracted the five most obvious inflection points of target contour and used them for a 

human body model regarding to behavior analysis (Fujiyoshi, Lipton, & Kanade, 2004). 

Afterwards, feature extraction methods were employed to describe human motions and 

distinguish human behaviors, such as moving direction, trajectory, shape, velocity, etc., 

which utilizes principal components analysis (PCA) to reduce the dimension of features. 

Human behavior recognition was implemented, the relevant feature extraction methods 

were proposed, such as Haar (Papageorgiou, Oren, & Poggio, 1998), histogram of 

oriented gradient (HOG) (Dalal & Triggs, 2005), etc. Moreover, the classifiers are 

adopted in the feature space to achieve object classification, these classifiers are operated 

based on the subset of regions in each image (Zitnick, & Dollár, 2014; Uijlings, Sande, 

Gevers, & Smeulders, 2013; Gould, Gao, & Koller, 2009), or the whole image in sliding 

windows. 

Human behavior recognition is to understand the predefined behaviors automatically 

so as to reduce the workload of security staff. To recognize and analyze the periodic 

motions, spatiotemporal model (Rui & Anandan, 2000) and periodic model (Cutler & 

Davis, 2000) were proffered. Human behavior recognition algorithms mainly split into 

twofold which enclose template-matching-based methods and space-state-based methods. 

Pertaining to the template-matching methods, the algorithms are easy to be 

implemented which have less time overhead, a positive effect is based on human behavior 

recognition with more substantial differences. However, it is hard to recognize human 

behaviors that have minor differences, it is sensitive to the changes of motions and noises. 

The motion energy image (MEI) has been employed for motion-based object recognition 
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by describing how objects move and where the motion occurs (Bobick & Davis, 1996). 

The MEI shows spatial distribution of contours and energy of motion. MEI algorithm, 

relied on motion history image (MHI), is a vision-based template method that expresses 

the target motion in the form of image brightness by calculating pixel changes at the same 

position. 

Furthermore, the combination of MEI and MHI was proposed (Bobick & Davis, 2001) 

with template matching in order to replace 3D spatiotemporal data which is embarked on 

recognizing very simple human behaviors. MEI and MHI were constructed for 

foreground images. While the MEI determines the spatial location of target motion in the 

image sequence, MHI reflects motion intensity of the target object in various positions. 

Dynamic time warping (DTW) algorithm (Brendel & Todorovic, 2009) was usually 

employed in the exemplar-based method for nonlinear matching. Although DTW is 

simple, the algorithm is robust to be applied to classification through the sequence of 

images. However, DTW algorithm requires a large deal of computations and is lack of 

considering dynamic characteristics between adjacent time sequences. In practice, 

adjacent frames in the sequence are highly correlated in time and space.  

A template-based method was proposed by adopting 3D spatiotemporal volume for 

human behavior recognition (Rodriguez, Ahmed & Shah, 2008), which is a typical single-

layered approach. For the space-state-based methods, each static pose or motion state in 

the image sequence is taken as a node, the state nodes are connected by a given probability. 

Hidden Markov model (HMM) has been broadly utilized in the prediction, estimation, 

detection, and behavior recognition of image sequences. The two hierarchical layers of 

HMMs can recognize human behaviors which contain much complex sequential 

structures (Nguyen, Phung, Venkatesh, & Bui, 2005).  

   Naïve Bayesian classifier (NBC) as the simplest probabilistic model is implemented 

for human behavior recognition. Furthermore, Dynamic Bayesian networks (DBNs) 

(Damen & Hogg, 2009) employed prior knowledge to establish causal relationship 

between visual features so as to deal with inherent uncertainty in video processing. The 
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variables are added or deleted to reflect various correlations amongst variables without 

affecting the training algorithm. The hidden states that contain multiple levels in DBNs 

represent human behaviors hierarchically (Dai, Di, Dong, Tao, & Xu, 2008). Therefore, 

it has good interpretability, the topological results are accurate and easy to be employed 

for understanding the semantics.  

HMMs and DBNs are applied to identify consistent action behaviors. Under the 

premise of sufficient training data, both models can reliably identify various behaviors 

and have a strong anti-interference capability, but are hard for recognizing complex 

behaviors with time series structures. Support vector machine (SVM) (Cortes & Vapnik, 

1995) has the training errors because of constraints of the optimization problem with the 

confidence being minimized so as to reach optimization goal. SVM has the unique 

advantage in solving the problems related to the small number of training samples, 

nonlinear model, high dimensional training data, and local minimum issue.  

There are plenty of studies using syntactic meaning (Joo & Chellappa, 2006) to 

represent human behaviors as symbols. Stochastic context-free grammars (SCFGs) model 

the high-level sequential activities by adopting a HMMs layer to present the activities as 

an atomic-level action, use stochastic parsing to recognize high-level activities (Ivanov 

& Bobick, 2000). A more reliable method can recognize multitasked activities by 

extending SCFGs (Moore & Essa, 2002). The SCFGs also were proposed to solve the 

segmentation problems for multiple objects, because context-free grammars (CFGs) 

method shows the possibility of segmenting and tracking objects in semantic level 

(Minnen, Essa, & Starner, 2003). Moreover, CFGs were used to recognize human 

activities and describe the semantics of these activitities directly. 

    Human behavior recognition is implemented by using unsupervised learning which 

does not require pretrained data, the classes among the training data are unlabeled. The 

objective of unsupervised learning is to study the unlabeled training data so as to reveal 

the regular pattern for further analysis. Clustering is the most popular method in 

unsupervised learning.  



57 
 

    A multi-observation hidden Markov model (MOHMM) was proposed to detect 

abnormal activities which were much effective to noisy and sparse datasets (Xiang & 

Gong, 2005). Self-organizing map (SOM) approach is a kind of competitive and 

unsupervised neural networks, which maps high-dimensional input data onto low-

dimensional space, maintains the topological structure of input data in high-dimensional 

space, transform similar sample points in high-dimensional space to adjacent neurons of 

the network output layer.  

    SOM has been applied to detect rare events, a method for classifying new events 

using Gaussian mixture model (GMM) from SOM maps attains the recognition of 

abnormal behaviors (Petrushin V. A., 2005). Niebles et al. utilized an unsupervised 

learning method combined with the spatiotemporal words by extracting both 

spatiotemporal interest points to achieve human action categorizations, which categorizes 

multiple actions with complex video sequences (Niebles, Wang, & Fei-Fei, 2008). 

The 2D CNN-based deep learning methods took the advantages to studied and 

developed in human behavior recognition (Carreira, & Zisserman, 2017; Donahue, Anne, 

Guadarrama, Rohrbach, Venugopalan, Saenko, & Darrell, 2015; Simonyan, & Zisserman, 

2014; Tu, Li, Zhang, Dauwels, Li, & Yuan, 2019). The 2D CNN-based deep learning 

methods can be chiefly categorized as frame-based aggregation models and two-stream 

CNN-based models (Zong, Wang, Chen, Wang, Wang, & Potgieter, 2020). For the frame-

based aggregation models, the feature maps will be extracted from each video frame by 

adopting CNN model and then aggregates the information to the recurrent neural network 

(RNN); Two-stream CNN-based models took the use of spatial CNN stream and temporal 

CNN stream to acquire the appearance and motion feature maps. Specifically, optical 

flow is normally adopted to extract the motion feature maps, thus, the speed and direction 

of each pixel will be acquired. Furthermore, the 3D CNN-based deep learning methods 

has been studied and developed for human behavior recognition, which shows the 

promising results than previous studies (Ji, Wei, Yang, & Kai, 2013; Karpathy, Toderici, 

Shetty, Leung, Sukthankar, & Li, 2014; Simonyan, & Zisserman, 2014; Tran, Bourdev, 

Fergus, Torresani, & Paluri, 2015). 
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The remarkable performance of convolutional neural network in the application of 

computer vision in 2D space has led to the research on the application of 3D space. The 

convolution structure in temporal domain is well studied in the past few years, which is 

usually expanded from space domain (𝑥, 𝑦) to 2D convolution structure in time domain 

(𝑥, 𝑦, 𝑡) . Table 2.4.1 shows the brief introduction and comparsion of three main 

approaches for human behavior recogntion. 

A P-CNN was proposed for action prediction, which extracts the key points and local 

features, aggregates them together (Chéron, Laptev, & Schmid, 2015). A 3D CNN for 

human behavior recognition collects spatio-temporal information for feature map 

extraction (Ji, Xu, Yang, & Yu, 2013). Compared with 2D CNNs, no matter how many 

channels 2D CNNs have, a convolutional kernel only outputs one feature map, which 

means, only the spatial relationship exists, the temporal relationship will be gone.  

C3D extends 3 × 3 convolution to 3 × 3 × 3 convolution. For human behavior 

recognition, temporal information is important to improve the classification. Compared 

with 2D CNN, 3D CNNs have a large number of parameters, which make training more 

difficult and requires more training data. However, C3D processes multiple frames at a 

time, compared with other types of methods, the calculation efficiency is very high. 3D 

convolution is to stack multiple consecutive frames to form a cube, then apply the 3D 

convolution kernel to the cube (Tran, Bourdev, Fergus, Torresani, & Paluri, 2015). 3D 

convolution kernel is factorized into 2D convolution kernel in spatial domain and 1D 

convolution kernel in temporal domain which shows 88.1% accuracy based on UCF-101 

dataset (Sun, Jia, Yeung, & Shi, 2015). A region convolutional 3D network (R-C3D) was 

suggested for detecting human behaviors in the end-to-end way (Xu, Das, & Saenko, 

2017). 

In this structure, each feature map in the convolutional layer will be connected to 

multiple adjacent frames in the proceed layer so as to capture the motion information. 

The 3D convolution kernel can merely extract one type of features from the cube, because 

the weight of convolution kernel in the whole cube is as same as the shared weights. 
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Table 2.4.1 The brief introduction and comparsion of three mian approaches for human 

behavior recogntion 

 Brief Introduction Pros Cons 

iDT 

Using the optical flow and SURF between video frames to 

obtain trajectories in the video footages, and the features 

are extracted along the trajectory. The SVM classifier was 

adopted to acquire the final results. 

Highest 

stability and 

high 

reliability 

Slow speed 

Two-

Stream 

CNN 

Optical flow is calculated every two frames in the video 

footage to obtain temporal information. Then, CNN model 

is trained for the video frames (spatial) and the dense 

optical flow (temporal). The two branches of the network 

classify the categories respectively. Finally, the class 

scores of the two networks are fused directly (including 

direct average and SVM) to get the final classification 

results. 

High 

precision on 

UCF-101 

(up to 96%) 

Slow speed 

with 20 FPS 

C3D 

The temporal and spatial features of video data are 

extracted by 3D convolution kernel. These 3D feature 

extractors operate in the spatial and temporal dimensions, 

so they can capture the motion information of the video 

stream. Then a 3D convolution neural network is 

constructed based on 3D convolution feature extractor. 

Fast speed 

with 300 

FPS 

Low 

precision on 

UCF-101 

(only 85%) 

    A 3D convolution is primarily based on the betterment of DenseNet. 2D convolution 

in original network is modified and applied to 3D convolution, 2D pooling is revised and 

supplied to 3D pooling. Moreover, a temporal transition layer (TTL) consists of several 

convolution kernels which have different sizes, 3D pooling layers are employed to 

generate the feature maps (Diba, Fayyaz, Sharma, Karami, Arzani, Yousefzadeh, & Van 

Gool, 2017). A deep network with temporal pyramid pooling (DTPP) is proposed. In 
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order to construct the representation in an end-to-end way, sparse sampling is carried out 

on the input video with enough frames. The time pyramid pooling layer is applied to 

encode frame features into a fixed size representation with multiple time scales to capture 

the temporal structure of human behaviors in the video (Zhu, Zhu, & Zou, 2018). 

Both 2D and 3D networks have a good effect on images and videos (Luvizon, Picard, 

& Tabia, 2018; Zanfir, Marinoiu, & Sminchisescu, 2018; Garcia-Hernando, Yuan, Baek, 

& Kim, 2018; Liu, Shahroudy, Wang, Duan, & Kot, 2018), but for spatiotemporal 

integration, the huge memory cost is still too high. Thus, a mixed 3D/2D Convolutional 

Tube (MiCT) combines 2D / 3D convolution module to generate more feature maps with 

in-depth and rich information (Zhou, Sun, Zha, & Zeng, 2018). 

Two-stream CNNs were proposed to recognize human actions, which contain both 

spatial stream (single frame) and temporal stream (multiframe optical flow), achieved a 

satisfactory performance. The Two-stream-based CNNs independently took advantage of 

dense optical flow from static frames and inter frames for pattern recognition; finally, it 

carried out the class score fusion (Simonyan & Zisserman, 2014). After the processing by 

using last fully connected layer, a softmax layer was ultilized to output the final result, 

which has two softmax-layer outputs. Each softmax has its own independent loss, the 

final loss is the superposition of two loss. The updated parameters are returned. Thus, the 

convolutional layer of this network is constant, the parameters of these two layers are 

shared with each other, which only modifies the final loss. Moreover, Zhu et al. proposed 

a novel hidden two-stream CNNs, which captures motion information between each 

frame implicitly, it is an end-to-end approach and does not require to compute the optical 

flow (Zhu, Lan, Newsam, & Hauptmann, 2018). 

A Two-stream inflated 3D convolutional neural network (I3D) was proposed to 

overcome the disadvantages of two-stream CNNs, which shows 80.2% accuracy on 

HMDB-51 dataset. It expands 2D convolution in two-stream structure to 3D convolution, 

the input of optical flow is also added into the network. The video flow and stacked optical 
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flow are input into 3D convolution network respectively to get the output results, the final 

result is the fusion of two flows (Carreira, & Zisserman, 2017).  

P3D method approximates the original 3 × 3 × 3 convolution with a 1 × 3 × 3 spatial 

convolution and a 3 × 1 × 1 temporal convolution. By combining three different modules, 

P3D ResNet is obtained. P3D ResNet optimizes C3D in terms of the number of 

parameters and processing speed (Qiu, Yao, & Mei, 2017). A R(2+1)D method utilizes 

2D convolution to extract spatial information, 1D convolution is employed to associate 

the information extracted in the proceed step to get the temporal information. It is used to 

implement a better nonlinear operation for spatiotemporal information extraction and 

increase the complexity of the model, which more suits for fitting (Tran, Wang, Torresani, 

Ray, LeCun, & Paluri, 2018).  

Classic iDT features and two-stream features are combined to propose the trajectory-

pooled deep-convolutional descriptors (TDD) approach. TDD treats the pretrained two-

stream networks as a fixed feature extractor. After obtained the two features, TDD takes 

use of spatiotemporal normalization to ensure that the numerical range of each channel is 

approximate to the same, and utilizes channel normalization to gurantee that the 

numerical range of the description vector of each spatiotemporal location is 

approximately the same, then applies trajectory pooling and Fisher vector to build TDD 

features, finally takes advantage of SVM for classification (Wang, Qiao, & Tang, 2015).  

A spatiotemporal structure based on two-stream CNNs was proposed by adding the 

convolutional fusion layer and temporal fusion layer, which have the similar number of 

parameters with previous networks (Feichtenhofer, Pinz, & Zisserman, 2016). In the same 

year, a ResNet-based Two-Stream CNNs extend 2D ResNet into the spatiotemporal 

domains, a skip stream connects the temporal stream and spatial stream to recognize the 

input sequences (Feichtenhofer, Pinz, & Wildes, 2016).  

Because adjacent frames have information redundancy, dense video sampling is not 

required. The temporal segment networks (TSN) adopt sparse sampling strategy 

associated with the information of the entire video, and utilizes dual-stream network to 
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obtain video clips and various scores, and finally output them through softmax layer 

(Wang, Xiong, Wang, Qiao, Lin, Tang, & Van Gool, 2016). The TSN is improved to 

achieve the temporal and relational reasoning between the video frames at different time 

(Zhou, Andonian, Oliva, & Torralba, 2018). Since not every frame in the video contains 

useful information, TSN was presented to extract local features, which are aggregated to 

the global features (Lan, Zhu, Hauptmann, & Newsam, 2017). The Two-Stream network 

was used to extract feature maps, the vector of locally aggregated descriptors (VLAD) is 

applied to get the video representation so as to achieve behavior recognition. It is found 

that the two branches of video frames (spatial) and optical flow (temporal) are best 

processed separately (Girdhar, Ramanan, Gupta, Sivic, & Russell, 2017). 

Not all frames in a video are equally vital to the recognition. If they are treated equally, 

valuable frame information will be submerged in other irrelevant frames. Zhu et al. 

alternately optimized key frame mining and classification. The network input N video 

clips and output the score of each category corresponding to each clip. If the category 

corresponds to real tags, randomly merging is applied, otherwise, the maxout merging is 

adopted, the most responsive video segment will be the key frame (Zhu, Hu, Sun, Cao, & 

Qiao, 2016). A hierarchical and spatiotemporal pyramid structure is applied to fuse the 

both spatial and temporal features, which achieved 94.6% accuracy based on UCF-101 

dataset (Wang, Long, Wang, & Yu, 2017). 

In a video, the movement between consecutive frames is very small, by adopting the 

iDT algorithm to densely-sampled feature points, using optical flow to track them is able 

to get a better video representation. The video representation obtained by comprehensive 

coding, a long-term dynamic process should be taken into account, thus, a temporal and 

liner encoding (TLE) is embedded into the CNNs so as to fuse and encode the feature 

map, the final feature representation is obtained by using the element-wise multiplication 

of the convolution of different video frames or clips with bilinear models (Diba, Sharma, 

& Van Gool, 2017). 
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A low-rank approximation of second order pooling (attentional pooling) is to replace 

mean pooling or max pooling in the last pooling layer of CNN network so as to achieve 

the behavior recognition (Girdhar, & Ramanan, 2017). A spatiotemporal vector of locally 

max pooled features (ST-VLMPF) has been introduced for local deep features encoding 

which aggregates multiple features and solved the problem of incorrect labels that 

assigned to the network inputs (Duta, Ionescu, Aizawa, & Sebe, 2017).  

Wu et al. proposed to train the compressed video directly based on deep neural 

networks, by adopting motion vectors as the input of the network, the difficulty of 

modeling sequential motion information is alleviated. Due to a huge size of original video 

and a large amount of temporal information, useful information is usually submerged with 

a large number of irrelevant data, through video compression, the amount of information 

will be reduced (Wu, Zaheer, Hu, Manmatha, Smola, & Krähenbühl, 2018). 

Both human behavior recognition and human pose estimation are closely related 

(Newell, Yang, & Deng, 2016; Artacho, & Savakis, 2020; Huang et al., 2020; Cheng et 

al., 2020; Zhang et al., 2020; Wang, Tighe, & Modolo, 2020; Xu et al., 2020; Zhang, 

Huang, & Wang, 2020; Isogawa et al., 2020; Kocabas et al., 2020; Kundu et al., 2020; Li 

et al., 2020; Mitra et al., 2020 ), a novel model of dynamic skeletons called Spatial 

Temporal Graph Convolutional Networks (ST-GCN) was put forwarded in 2018 by 

automatically learning both spatial pattern and temporal pattern to achieve human 

behavior recognition (Yan et al., 2018). It performs pose estimation on videos and 

constructs spatiotemporal graph based on skeleton sequences. Spatiotemporal graph 

convolution network (ST-GCN) will gradually generate higher-level feature maps based 

on the graph. It will be classified by using standard softmax classifier to the corresponding 

category.   

The dynamic skeleton models are naturally represented by time series of human 

positions in both 2D and 3D coordinates. Then, human behavior recognition is attained 

by analyzing its action pattern. The ST-GCN model consists of nine layers of 

spatiotemporal graph convolution units, the first three layers have 64 channels for output, 
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the following three layers have 128 channels for output and the rest of three layers have 

256 channels for output. All of these layers have nine temporal kernel size, ResNet was 

applied to each unit. The proposed ST-GCN outperforms previous skeleton-based model. 

The combination of skeleton-based model and frame-based model further improves the 

performance of human behavior recognition. In addition, the ST-GCN captures motion 

information in dynamic skeleton sequences. 

Human behavior recognition is able to be achieved by adopting skeleton-based multi-

person pose estimation (Benzine, Chabot, Luvison, Pham, & Achard, 2020;Chen, Ai, 

Chen, Zhuang, & Liu, 2020; Fabbri, Lanzi, Calderara, Alletto, & Cucchiara, 2020;), 

which is mainly divided into two frameworks: Two-step framework, part-based 

framework. The two-step framework is to detect the pedestrian firstly, get the boundary 

frame, detect the key points of human body in each boundary frame, connect them into a 

human shape. The disadvantage is that the influence of the detection frame is too large, 

the missed detection, false detection, the size of IoU will affect the results. The 

representative method is RMPE (Fang, Xie, Tai, & Lu, 2017). The part-based framework 

is to detect the key parts of each human body in the whole frame, and splice the detected 

parts into a human shape. The disadvantage is that different parts of people will be 

separated, the representative method is OpenPose.  

A 3D skeleton sequence is set forth to regularize LSTM network (Mahasseni, & 

Todorovic, 2016). Different from the previous work, an attention-enhanced graph 

convolutional LSTM (AGC-LSTM) was implemented for human behavior recognition, 

which adopts skeleton information as the input of LSTM, spatiotemporal feature maps 

are extracted by using AGC-LSTM, while the LSTM has a strong ability to acquire 

temporal features. Combined LSTM with graph structure together, the model effectively 

utilizes spatiotemporal information of input images (Si, Chen, Wang, Wang, & Tan, 

2019). 

Recurrent neural networks (RNNs) are widely utilized in action recogntions by 

encoding the sequence and predicting the actions frame by frame; but it is difficult for 
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RNNs to maintain long-term memory in practice (Ma, Sigal, & Sclaroff, 2016; Singh, 

Marks, Jones, Tuzel, & Shao; Yeung, Russakovsky, Mori, & Fei-Fei, 2016; Lev, Sadeh, 

Klein, & Wolf, 2016). RNNs based on a joint classification regression are proposed to 

achieve human action detection (Li, Lan, Xing, Zeng, Yuan, & Liu, 2016). 3D CNNs are 

proposed to learn the spatiotemporal relationships, the temporal evolution of the learned 

features in each timestep was considered by using an LSTM-based recurrent neural 

networks (RNNs) to classify each sequence (Baccouche, Mamalet, Wolf, Garcia, & 

Baskurt, 2011). In 2011, an unsupervised learning-based method for human behavior 

recognition method (Le, Zou, Yeung, & Ng, 2011) was presented, the independent 

subspace analysis (ISA) is extended to 3D video data, unsupervised learning algorithm is 

applied to model the video blocks. Moreover, the ISA algorithm based on the small input 

block convolutes the learned network and the larger input image, combines the responses 

from the convolution process as the input of the next layer, then applies the obtained 

description method to the video data.  

A spatiotemporal long short-term memory network (ST-LSTM) has extended the 

traditional LSTM to spatiotemporal domain (Liu, Shahroudy, Xu, & Wang, 2016). The 

ST-LSTM has been improved with the global context memory, the global context 

attention mechanism is brought into the ST-LSTM, where the attention mechanism 

obtains the structure information and also eliminates the interference of noises (Liu, Wang, 

Hu, Duan, & Kot, 2017). 

Sharma et al. took use of attention mechanism to human action recognition, which 

mingles soft attention model with the LSTM to cope with long sequence data and learn 

the key point of the movement (Sharma, Kiros, & Salakhutdinov, 2015). An end-to-end 

spatiotemporal attention model was accommodated for human behavior recognition 

(Song, Lan, Xing, Zeng, & Liu, 2017). The end-to-end recurrent pose-attention network 

(RPAN) was expounded by using CNN to generate feature cube, post attention 

mechanism shares the attention parameters through semantically-related human joints so 

as to attain high quality of human behavior recognition, which indicates 97.4% accuracy 

based on PennAction dataset (Du, Wang, & Qiao, 2017).  
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 2D CNN based on the single frame has been employed to extract feature maps and 

conduct temporal information to recognize gestures (Koller, Ney, & Bowden, 2016; Wu, 

Ishwar, & Konrad, 2016). Moreover, 2D CNN is expanded to 3D CNN (Liu, Zhang, & 

Tian, 2016; Molchanov et al., 2016; Huang et al., 2015) so as to learn the motion features 

by adopting 3D filters in the convolutional layers, which show the positive results for 

recognizing hand gestures. CNN model was proposed to detect and segment hands in both 

unlabeled and synthetic dataset, which achieved 82% accuracy based on segmentation 

and detection (Neverova, Wolf, Taylor, & Nebout, 2014). 

 The CNN network has been well investigated to solve the image classification and 

recognition tasks. Moreover, it also has been investigated and implemented for sign 

language recognition in recent years. A CNN-based method was proposed with Gaussian 

skin color model and background subtraction to achieve gestures recognition from the 

camera images. The Gaussian skin color model controlled the influence of light on skin 

color, and the non-skin color of image is filtered out directly, which has 93.80% accuracy 

from a given dataset (Han, Chen, Li, & Chang, 2016). A two-stage CNN architecture 

(HGR-Net) was given, where the first stage was proposed to determine the region of 

interest by performing pixel-level semantic segmentation, the second stage is to recognize 

hand gesture (Dadashzadeh, Targhi, Tahmasbi, & Mirmehdi, 2019). Moreover, the 

combination of fully convolutional residual network with spatial pyramid pooling was 

adopted at the first stage, the result shows that proposed architecture improves 1.6% 

accuracy for recognition by using OUHands dataset.  

 A deep convolutional network was proposed with multidimensional feature learning 

approach (MultiD-CNN) to recognize the gestures from the RGB-D videos (Elboushaki, 

Hannane, Afdel, & Koutti, 2020). The method took use of 3D ResNet for training a model 

with both spatiotemporal features, the long short-term memory (LSTM) for processing 

temporal dependencies and the proposed method is outperformed compared with the 

previous methodsbased on different datasets. Chen et al. implemented the spatiotemporal 

attention with dynamic graph constructed (DG-STA) method to achieve hand gesture 

recognition. It took advantage of fully connected graph and self-attention mechanism to 
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learn the node features and edges from the hand skeleton, a novel spatiotemporal mask is 

applied to reduce the computational cost. According to the experimental results, DG-STA 

method achieved the superior performance compared with others for recognizing hand 

gestures (Chen, Zhao, Peng, Yuan, & Metaxas, 2019).  

 A deep-learning-based method was proposed by adopting two ResNet CNNs and soft 

attention with fully connected layer to recognize dynamic gestures. Moreover, a method 

was proposed to condense a digital video into a single RGB image and passed to the 

model for the final classification. The experimental result based on public datasets shows 

that the proposed method is able to improve the accuracy compared with other methods 

(Dos Santos, Samatelo, & Vassallo, 2020). Three representations of depth sequences are 

constructed, which includes dynamic depth images (DDI), dynamic depth normal images 

(DDNI), and dynamic depth motion normal images (DDMNI) from the depth maps to 

capture the spatiotemporal information by adopting the bidirectional rank pooling, the 

CNNs-based model is considered to achieve gesture recognition. The proposed model 

was evaluated based on large-scale isolated gesture recognition at the ChaLearn LAP 

challenge 2016 and the model was achieved the growth of 16.34% accuracy on the IsoGD 

dataset (Wang, Li, Liu, Gao, Tang, & Ogunbona, 2016). 

 Two different deep learning methods were fused to achieve gesture recognition. The 

convolutional two-stream consensus voting network (2SCVN) to explicitly simulate the 

short-term and long-term structures of RGB sequences, and 3D Depth-Saliency CNN 

stream (3DDSN) was used to present the motion features. The proposed methods have 

been evaluated based on ChaLearn IsoGD dataset with 4.47% growth of accuracy 

compared with other models in 2016 (Duan, Zhou, Wan, Guo, & Li, 2016). Molchanov 

et al. designed a dynamic hand gesture recognition method by adopting a recurrent 3D 

CNN model. Four kinds of visual data were fused to boost the recognition rate, which 

includes RGB, depth, optical flow and stereo IR. The proposed model achieved the 

positive accuracy rate based on ChaLearn dataset, which has 1% growth compared with 

other models (Molchanov, Yang, Gupta, Kim, Tyree, & Kautz, 2016). A hand gesture 

recognition and identification model was proposed based on the two-stream CNNs, the 
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depth map and optical flow as the inputs were utilized in this method. The proposed model 

has 18.91% accuracy improvement based on MSR Action3D dataset compared with the 

relevant models (Wu, Ishwar, & Konrad, 2016). 

 Rastgoo et al. set forth the model for hand sign language recognition by utilizing the 

restricted Boltzmann machine (RBM) for visual data. The model took use of RGB and 

depth as the input: Original image, cropped image, and noisy cropped image. The CNN 

is used to detect the hand in each image, three forms of the detected hand images are 

generated to the RGB and depth will be inputted to the RBM. The output of the RBM will 

be fused to recognize the sign label. As the result, the proposed model has been able to 

achieve significant improvement based on four different public datasets compared with 

the state-of-the-art models (Rastgoo, Kiani, & Escalera, 2018). After the RBM model, 

Rastgoo et al. proposed a deep cascaded model for sign language recognition from the 

videos in 2020. The model employed three spatial features: Hand features, extra spatial 

hand relation (ESHR), and hand pose (HP) features which were fused in the model and 

feed into the LSTM for temporal feature extraction. The SSD model was also adopted for 

hand detection. The proposed model was evaluated based on IsoGD dataset, which 

achieved 4.25% accuracy improvement compared with others (Rastgoo, Kiani, & 

Escalera, 2020).  
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Chapter 3 

Methodology 

 

 

The main content of this chapter is to clearly articulate research 

methods so as to satisfy the objectives of this thesis. The chapter mainly 

covers the processes of data preparation and data augmentation. 

Moreover, the details of proposed methods for human behavior 

recognition will be also detailed. Finally, the experimental environment 

will be explicated in this chapter, the implementations with the 

evaluation metrics will be also detailed. Moreover, the results of 

proposed methods will be demonstrated in the next chapter. 
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3.1 Data Collection 

There are a plenty of public datasets for human behavior recognition which are provided 

by multiple research groups, such as Weizmann dataset, KTH dataset, UCF dataset, 

CAVIAR dataset, CASIA dataset, and BEHAVE dataset. Table 3.1.1 shows a brief 

description of these datasets. 

Table 3.1.1 A brief description of the different datasets 

Datasets Brief descriptions 

Weizmann Single person behavior analysis with daily data, static camera 

KTH Single person behavior analysis with daily data, static camera with 

different view angles 

UCF Realistic action videos collected from the YouTube 

CAVIAR Multi-person behavior analysis 

CASIA Single/multiple person interaction data with different static camera angles 

BEHAVE Multiagent interaction data 

In this project, all the experiments were based on the first two public datasets: 

Weizmann dataset and KTH dataset and our own datasets, the focus of our research is 

mainly on human behavior recognition by using surveillance videos. Weizmann dataset 

encapsulates ten classes, each of the classes has nine videos which were shot by using a 

static camera with single person behavior analysis with ordinary data, the dataset has nine 

participants involved in total. The resolution of the image samples is 180144. In our 

experiments, we chose five classes which cover the categories: Walking, skipping, 

running, jacking, and jumping. Figure 3.1.1 shows the examples of Weizmann dataset. 
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Figure 3.1.1 The examples of the Weizmann dataset 

KTH dataset includes a total of 2,391 videos with six actions from 25 participants in 

four scenarios: Indoor, outdoor, outdoor with amplification, and outdoor with different 

clothing. The videos in this dataset enclose scaling changes, clothing changes, and 

lighting changes which were captured by using static cameras. The resolution of this 

dataset is 160120. In our experiments, we chose all the classes which have the labels: 

Walking, running, boxing, handclapping, jogging and handwaving, with the 5,667 video 

frames in total. Figure 3.1.2 shows the examples of KTH dataset. 

 

Figure 3.1.2 The examples of the KTH dataset 

In this thesis, we also created our own datasets. The reason why we created our own 

datasets is firstly to test the proposed models that can be used stably and robustly in the 

real scenarios; secondly, most of the public datasets only have the video with low 

resolutions; In the end, our datasets have the higher resolution compared with the public 

datasets, which are more realistic and suitable at present. Moreover, higher resolution 
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images are more suitable for data augmentation and are able to produces better 

segmentation accuracy. In future, we will extend our dataset and publish it for other 

researches. Our datasets include two parts, our dataset I is the visual data which comprises 

of the samples from a total of 20 video footages with five classes of human behaviors, 

which were taken by using a static camera. The resolution of the samples in this dataset 

is 1280720. Our dataset I consists of 3,200 frames in total and 2,000 frames were 

selected for model training, 1,200 frames were picked up for model testing, Figure 3.1.3 

shows the example of our own dataset I. Another dataset II contains nine video footages 

of four classes with the tags: Hello, nice, meet, you, which includes the sign language 

data collected by ourself. The resolution of this dataset is 960564. The dataset II contains 

3596 frames in total, there are 2500 frames chosen for model training, 1,096 frames were 

selected for model testing. Figure 3.1.4 shows the samples of our dataset II. 

 

Figure 3.1.3 The examples of our dataset I 

 

Figure 3.1.4 The examples of our own dataset II 
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Figure 3.1.5 The steps of deep learning based human behavior recognition 

Figure 3.1.5 shows the flowchart of human behavior recognition by using deep 

learning in our experiments. Moreover, in this research study, we adopted two public 

datasets to achieve our experimental results. Moreover, there are 5,667 video frames for 

the KTH dataset; regarding Weizmann dataset, it contains 1500 video frames. All the 

experiments were operated with a single GPU (RTX 2080Ti) acceleration to reduce the 

time consuming while training. Moreover, for training the better deep learning models to 

suit our experiments, the hyperparameters also play pivotal roles in each deep neural 

networks, such as learning rate, batch size etc. The training configuration for the 

hyperparameters of our experiment is listed below: 
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• Learning rate: 0.001 

• Batch size: 64 

• Momentum: 0.9 

• Input image resize: 416 × 416 × 3 

• Training and validation split: 80% / 20% 

3.2 Data Preparation 

As shown in Figure 3.1.1, the steps need to be completed before we send our data into a 

model of deep neural networks. The first step is to split a video into frames by using 

MATLAB with simple codes, the simple pseudocode for splitting a video to frames is as 

followed. In our experiment, we mainly adopt three datasets. Two datasets were acquired 

from the public datasets, another dataset was collected by our own. Moreover, there are 

11,668 video frames in total. 

Algorithm 3.2.1 Convert video to frames 

Input: The original video 

Output: The video frames 

video = VideoReader(video_file); 

frame_number=floor(video.Duration * video.FrameRate); 

For 𝑖 from 1 to frame_number do 

image_name=strcat('save_path',num2str(𝑖)); 

image_name=strcat(image_name,'.jpg'); 

I=read(video, 𝑖); 

imwrite(I, image_name, 'jpg'); 

I=[]; 

End for 

 The second step is to manually find the region of interest (ROI) in each frame and 

label the ROI with correct class. In our experiments, Weizmann dataset and our own 

dataset encompass five different classes, KTH dataset contains six different classes. We 

use a Python based toolbox for video frame labelling, which makes labelling much easier 
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and time efficient. Figure 3.2.1 shows the shortcut of labelling toolbox that we adopted 

in this thesis. 

 

Figure 3.2.1 The shortcut of the labelling toolbox 

 After finding the ROI, we create a rectangle that contains the correct class, and label 

each frame. Moreover, the name of each class is predefined by ourself. The ROI of each 

frame will be stored in a .xml file separately. Figure 3.2.2 shows the example of the stored 

data in .xml file. 

 

Figure 3.2.2 The example of the .xml file for labelling 
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where the .xml file will store the original frame, the coordinates of ROI in the frame and 

the class of each ROI. All the ROI information is stored into the .xml file. All ROI 

information is stored in the .xml files by using the PASCAL VOC format in order to 

complete the forthcoming training and testing. 

3.3 Data Augmentation 

A large scale of dataset is the premise of a successful application of deep neural networks 

(DNNs). Thus, data augmentation methods make a series of random changes to the 

training image so as to produce training samples and expand the scale of the training 

dataset. Normally, by increasing the depth and width of neural network, the learning 

ability of neural network is enhanced, which is convenient to fit the distribution of training 

data. In the convolution neural network, our experiments show that the depth is more 

important than width. However, with the increasing the depth of neural networks, the 

parameters that need to be trained will also increase, which will lead to overfitting. When 

the dataset is small, too many parameters will fit the characteristics of the dataset. 

 The data augmentation includes scale, rotation, crop, random noises, etc. (Yan, 

Zhang, Wang, Paris, & Yu, 2016). In our experiments, we adopt the data augmentation 

methods in order to increase our samples to achieve better performance of our models, 

the image brightness and contrast were adjusted in our experiments. Figure 3.3.1 shows 

the examples of data augmentation for our experiments.  

 For the brightness adjustment, in order to change the brightness of each image, all 

the pixel values of each image should be acquired. Then, in order to adjust the brightness 

of each image, we need to increase/decrease the intensity of each pixel by a constant. The 

simple pseudocode for the brightness adjustment is provided as follows. 
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Figure 3.3.1 The examples of data augmentation 

Algorithm 3.3.1 Brightness adjustment for images 

Input: The original images 

Output: The new images which changed by brightness adjustment 

orgImage = getPixelValue(r, g, b) 

newR = r(orgImage) + brightness 

newG = g(orgImage) + brightness 

newB = b(orgImage) + brightness 

changedPixelValue = RGB(newR, newG, newB) 



78 
 

    In Algorithm 3.3.1, given the original three-dimensional image 𝑜𝑟𝑔𝐼𝑚𝑎𝑔𝑒, each 

pixel is denoted as getPixelValue(𝑟, 𝑔, 𝑏), the brightness as a constant value achieves 

the adjustment, the adjusting range for brightness is within the interval (0,255). In our 

experiments, we set the value as 1.2, which means that the pixel intensity of input the 

image will be brighter as 120% of the original image. 

 The contrast is the difference between the intensity of both the maximum pixel and 

the minimum pixel in an image. The contrast adjustment is implemented by changing the 

maximum and minimum intensities of the given pixels, the range for contrast adjustment 

is within the interval (−255,255). The negative value will lessen the contrast of the 

image; on the contrary, positive value will raise the contrast of the image. The simple 

pseudocode for the contrast adjustment is shown as follow. 

Algorithm 3.3.2 Contrast adjustment for images 

Input: The original images 

Output: The new images which changed by contrast adjustment 

orgImage = getPixelValue(r, g, b) 

newR = 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 × (r(orgImage) − valueContrast) + valueContrast 

newG = 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 × (g(orgImage) − valueContrast) + valueContrast 

newB = 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 × (𝑏(orgImage) − valueContrast) + valueContrast 

changedPixelValue = RGB(newR, newG, newB) 

where the 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 denotes the correction factor, valueContrast refers to the contrast 

range. 
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3.4 The Proposed Method 

In our experiment, we adjust the layers of deep neural networks. YOLOv3 contains 53 

layers in total. Moreover, we adjust YOLOv3 layers by decreasing its convolutional 

layers and reducing GPU processing time.  

 

Figure 3.4.1 The revised YOLOv3 network 

For our deep neural network, we only have 45 layers in total which are shown in 

Figure 3.4.1, the left side is the original YOLOv3 network, the right side is the modified 

YOLOv3 network, we merely decrease half of the 8 layers. In our experiment, we adjust 

the network to train our model and also utilize it to recognize the simple human behaviors 
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such as walk, run, skip, jack and jump. Moreover, Figure 3.4.2 shows the example of 

feature visualization for the revised YOLOv3 network. 

 

Figure 3.4.2 The example of feature visualization for the revised YOLOv3 network 

In this research project, we spell out a spatial attention-based model SKNet which 

explicates more positive results than previous models in human behavior recognition. 

Pertaining to the spatial attention module, its focus is on where an informative part is. 

Figure 3.4.3 shows the structure of spatial attention module. The spatial attention is 

calculated as 

𝑀𝑠(𝐹) = ⁡𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))⁡     (3.4.1) 

where 𝜎(∙) is the sigmoid function, 𝑓7×7(∙) is a convolution function with the filter 

size of 77. The spatial attention module applies average-pooling and max-pooling 

operations along the channel axis and concatenates them to generate an efficient feature 

descriptor. Consequently, a convolution operation with a 7×7 filter is applied to produce 
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the feature maps, a sigmoid function for normalization is offered to yield the final feature 

maps. 

 

Figure 3.4.3 The structure of spatial attention module 

The Selective Kernel Networks (SKNet) (Li et al., 2019) was utilized into this 

research work to attain human behavior recognition, the SKNet contains multiple 

selective kernel units which were stacked to a deep neural network.  

For split operator, through any given feature map X ∈ 𝐑𝐻′×⁡𝑊′×⁡𝐶⁡′ , we firstly 

perform two transformations 𝐹̃: 𝑋 → 𝑈̃ ⁡∈ ⁡𝐑𝐻×𝑊×𝐶  and 𝐹̂: 𝑋 → 𝑈̂ ⁡∈ ⁡𝐑𝐻×𝑊×𝐶  with 

convolution sizes of 3 and 5 respectively, where 𝐹̃  and 𝐹̂  are to conduct two 

transformations which is composed of efficiently grouped convolutions, batch 

normalization, ReLU function in sequence, and get the output. Moreover, in order to 

further betterment the efficiency, the conventional convolution of 5 × 5 convolution 

kernel is replaced by 3 × 3 convolution kernel and dilation size 2. 

Fuse operator is to filter the results from multiple branches via an element-wise 

summation, then embed the global information by simply using global average pooling 

to generate channel-wise statistics. Furthermore, a compact feature is to enable the 

guidance for adaptive selections by using a simple fully connected layer, with the 

reduction of dimensionality for better efficiency.  

The select operator utilizes softmax function to apply on the channel-wise digits. 

where a and b denote the soft attention vector for the previous corresponding output, the 

final feature map V is acquired through the attention weights based on various kernels. 
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Figure 3.4.4 The structure of a block of SKNet with the spatial attention module 

 

Figure 3.4.5 The structure of single block of ResNeXt model 
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In this research project, we combine the spatial attention module along with the 

SKNet to achieve human behavior recognition. Figure 3.4.4 shows a block of SKNet with 

the spatial attention module. For each block, it is similar to ResNeXt block, but it contains 

a convolution operation with the filter size 11, selective kernel convolution and spatial 

attention module. Figure 3.4.5 shows the structure of single block of ResNeXt model. 

ResNeXt adopted the group convolution, which controls the number of groups by 

cardinality, and each branch adopts the same topology. Thus, ResNeXt model not only 

improved the accuracy without increasing the complexity of the parameters, but also 

reduced the computation cost. 

Table 3.4.1 The structure of SKNet with attention module 

Output ResNeXt SKNet SKNet + Attention 

112×112 7×7, 64, stride 2 

56×56 3×3 max pool, stride 2 

56×56 [
1 × 1, 128
3 × 3, 128
1 × 1, 256

⁡, 𝐶 = 32] × 3 [
1 × 1, 128
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 128
1 × 1, 256

⁡] × 3 [

1 × 1, 128
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 128
1 × 1, 256

𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

] × 3 

28×28 [
1 × 1, 256
3 × 3, 256
1 × 1, 512

⁡, 𝐶 = 32] × 4 [
1 × 1, 256
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 256
1 × 1, 512

⁡⁡] × 4 [

1 × 1, 256
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 256
1 × 1, 512

𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

] × 4 

14×14 [
1 × 1, 512
3 × 3, 512
1 × 1, 1024

⁡, 𝐶 = 32] × 6 [
1 × 1, 512
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 512
1 × 1, 1024

] × 6 [

1 × 1, 512
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 512
1 × 1, 1024

𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

] × 6 

7×7 [
1 × 1, 1024
3 × 3, 1024
1 × 1, 2048

⁡, 𝐶 = 32] × 3 [
1 × 1, 1024
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 1024
1 × 1, 2048

] × 3 [

1 × 1, 1024
𝑆𝐾⁡𝑢𝑛𝑖𝑡, 1024
1 × 1, 2048

𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

] × 3 

1×1 7×7, global average pool, softmax, 5-d 

Table 3.4.1 shows the structure of SKNet with attention module, it has four stages 

with {3, 4, 6, 3} SK units. For each SK unit, the parameters will be set as 
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𝑆𝐾⁡𝑢𝑛𝑖𝑡 = [𝑀 = 2, 𝐺 = 32, 𝑟 = 16]⁡          (3.4.2) 

where 𝑀 is the number of paths which is set as two, that means, two different kernels 

are aggregated. The group number 𝐺 is set to 32 that controls the cardinality of each 

path. 𝑟 is the reduction ratio which is set to 16 to control the numbers of parameters in 

the fuse operator. 

 In this research project, we proposed an ensemble learning-based method to 

recognize human behavior by using Weka 3 to combine our models together, we gained 

much better results. Ensemble learning is able to complete the learning tasks together by 

integrating the multiple learning algorithms to get the better performance of the results. 

The ensemble learning is to combine multiple weak classifiers in order to get a better and 

more comprehensive strong classifier. The potential idea of ensemble learning is that even 

if a weak classifier gets a wrong prediction, other weak classifiers can correct the error 

back. Ensemble learning is simply divided into two types, the homogeneous ensemble 

learning and heterogeneous ensemble learning. When all the individual learners are the 

same, we see them as homogeneous ensemble learning; on the contrary, when all the 

individual learners are different, we treat them as heterogeneous ensemble learning. In 

our experiments, we adopt four learners, which include AdaBoost (Freund, & Schapire, 

1995; Norvig, & Russell, 2016; Ertel, 2018), Random Forest (Breiman, 2001; 

Kontschieder, Fiterau, Criminisi, & Bulo, 2015), Bagging (Breiman, 1996), and Naïve 

Bayes. 

The general structure of ensemble learning is to produce a group of individual 

learners and combine them together. Figure 3.4.6 shows the basic structure of ensemble 

learning. 
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Figure 3.4.6 The basic structure of ensemble learning 

Boosting method assists us to get a strong learner by combining a series of weak 

learners and integrating their learning ability. The adaptive boost (AdaBoost) adjusts the 

weight of samples base on the basis of previous learners, increases the proportion of 

samples that have been incorrectly classified, reduce the proportion of samples that have 

been correctly classified. The learners will focus on those samples that have been 

incorrectly classified. Finally, these learners are combined into a strong learner by 

weighting. Specifically, learners with high classification accuracy have higher weights, 

while learners with low classification accuracy have lower weights. 

Decision tree as the component of random forest, decision tree is a rapid and effective 

method with tree structure, in which each internal node represents a test on an attribute, 

each branch represents a test output, and each leaf node represents a category. Figure 

3.4.7 shows the basic structure of a decision tree. 
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Figure 3.4.7 The basic structure of the Decision Tree 

Random forest is a classifier that takes use of multiple decision trees to train and 

predict samples, the output is determined by using mode of the output category of the 

individual tree. Random forest has the advantages with the high accuracy, it is not easy 

to overfit, Random forest algorithm is able to handle with both discrete and continuous 

data. 

Bootstrap aggregating algorithm (Bagging algorithm) construct multiple weak 

learners separately. The multiple weak learners are in parallel relationship with each other 

that can be trained simultaneously. Multiple weak learners are combined together. The 

Bagging algorithm is combined with other classification and regression algorithms to 

improve its accuracy and stability, while reducing the variance of the results to avoid 

overfitting. 

Naïve Bayes method is based on Bayes algorithm, which assumes that given the 

target value, the attributes are mutually independent on each other. That is to say, no 

attribute variable will occupy a larger proportion in decision making, and also no attribute 

variable will occupy a smaller proportion in decision making. 
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In human behavior recognition, most of traditional machine learning methods are 

based on feature extraction techniques, most of feature extraction techniques are based 

on spatial information, which may be affected by external environments. As an effective 

machine learning method, iDT has accomplished contributions in the field of human 

behavior recognition. In deep learning, most of the research work explicates that both 

spatial and temporal information is vital to motion features. Thus, LSTM is taken into 

account in our research in order to extract the temporal information for each video frames. 

Figure 3.4.8 shows the basic LSTM architecture for our study. 

 

Figure 3.4.8 The basic LSTM architecture for human behavior recognition 

 In Figure 3.4.7, we convert a video to the sequence of feature vectors so as to 

accurately present the features from each video frame. Consequently, LSTM net is 

applied to predict human behaviors. After combined CNN and LSTM, the network 

achieves extremely high accuracy of human behavior recognition. The reason is that our 

convolutional operator is able to deal with each video frame independently. The model 

has the capability to restore the structure of each sequence and reshape the output to a 

vector sequence. CNNs encompass the feature extractor, the output feature maps are 

generated from activation functions and relevant pooling layers, the feature maps 
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exported from the CNNs will be imported as the input of the LSTM network. Figure 3.4.9 

shows the CNN+LSTM network structure. 

 

Figure 3.4.9 The network structure of CNN+ LSTM     
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3.5 Evaluation Metrics 

To evaluate different models, cross validation was utilized in order to measure the 

performance of human behavior recognition. The primary purpose of this confusion 

matrix is to compare the ground truth with the classification results. Furthermore, the 

confusion matrix will not only provide the classification accuracy, but also show the 

relevant relationship of results and predicted classes. Table 3.5.1 shows the confusion 

matrix. 

Table 3.5.1. The confusion matrix 

 The predicted classes 

The actual classes 

 Positive Negative 

Positive TP FN 

Negative FP TN 

where: 

• True Positive (TP): positive samples are correctly predicted as positive 

samples by using the classifiers. 

• True Negative (TN): negative samples are correctly predicted as negative 

samples by using the classifiers. 

• False Positive (FP): negative samples are incorrectly predicted as positive 

samples by using the classifiers. 

• False Negative (FN): positive samples are incorrectly predicted as negative 

samples by using the classifiers. 

    Accuracy (ACC) refers to the proportion of the total number, which is correctly 

predicted, it is the most common evaluation method. 
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ACC =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
.                         (3.5.1) 

    Recall (R) indicates the ratio of the positive samples are correctly classified, and 

the equation is presented as follow 

𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
.                                 (3.5.2) 

    Precision (P) means the proportion of actual positive instance in the samples which 

are classified as positive samples,   

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                 (3.5.3) 

Intersection over Union (IoU) is a standard performance measure for the object 

segmentation problem. IoU represents the overlap between the candidate bounding box 

and the ground truth bounding box, namely, the ratio of their intersection and union. The 

closer the correlation, the greater the value. The best situation is both candidate bounding 

box and the ground truth bounding box are completely overlapped, that means, the IoU 

ratio is one. Figure 3.5.1 shows the basic idea of IoU. 

 

Figure 3.5.1 The basic idea of IoU 

Given a set of images, the IoU measurement gives the similarity between the 

predicted area of the objects presented in the set of images and the ground truth area, 

which is defined by eq.(3.5.4)  

 𝐼𝑜𝑈 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁+𝐹𝑃)
⁡⁡𝑜𝑟⁡

area⁡of⁡overlap

area⁡of⁡union
.              (3.5.4) 
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Mean average precision (mAP) for a set of classes is the mean of average precision, 

where 𝑁 denotes as the number of classes and⁡𝐶 means as the class,   

𝑚𝐴𝑃 =
∑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶

𝑁(𝐶𝑙𝑎𝑠𝑠𝑒𝑠)
.                      (3.5.5) 

To verify the time cost of our proposed methods, the frame per second (FPS) was 

calculated at the backstage. FPS calculation is presented as follow: 

FPS =
𝑓𝑟𝑎𝑚𝑒𝑁𝑢𝑚

𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒
                          (3.5.6) 
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Chapter 4 

Results 

  

 

The main content of this chapter is to introduce the schema of method 

and implementation of human behavior recognition based on deep 

learning. The experimental results and outcomes will be detailed under 

the support of tables and figures. Moreover, the limitations of this thesis 

will be pointed out at the end of this chapter. Based on the results, the 

discussions and analysis will be summarized in the next chapter. 
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4.1 Experimental Results 

Our focus of this thesis is chiefly on the proposed deep learning methods and how they 

affect our outcomes. Two public datasets were selected, we also create our own datasets 

for this research work. We adopted four models for our experiments which include 

YOLOv3, YOLOv2, ResNet, and DenseNet to gain the results of human behavior 

recognition. Our focus was on these methods how it affects the outcomes. Moreover, an 

attention mechanism based on the deep neural networks (ResNeXt and SKNet) were also 

investigated in this research project. Figure 4.1.1 and Figure 4.1.2 show the results on the 

video frames utilizing two datasets. Figure 4.1.3 and Figure 4.1.4 show the results based 

on our own dataset Ⅰ & Ⅱ. 

 

Figure 4.1.1 The results of video frames for the Weizmann dataset 

 

Figure 4.1.2 The results of video frames for the KTH dataset 
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Figure 4.1.3 The results of video frames for our own dataset Ⅰ 

 

Figure 4.1.4 The results of video frames for our own dataset Ⅱ 

4.2 Weizmann Dataset 

Four deep learning models were adopted in this project, by adopting these models, 

accuracy is achieved up to 90%. YOLOv3 shows the highest accuracy 96.29% and 

DenseNet has the lowest accuracy 92.62%. Figure 4.2.1 shows the training loss of each 

proposed models, YOLOv2 achieves the lowest training loss 0.96%, YOLOv3 has the 

highest training loss 1.81%. 
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Figure 4.2.1 The training loss via Weizmann dataset by adopting proposed models 

Pertaining to Weizmann dataset, YOLOv3 gains the highest accuracy 96.29%, the 

overall accuracy of ResNet gets up to 91.40%. Figure 4.2.2 shows the result of the trained 

YOLOv3, the training loss is around 0.0181 after computed 44,200 epochs, where the x-

axis represents the number of iterations during the training process, y-axis indicates the 

training loss for each iteration. The test results of using YOLOv3 have 0.946 mAP. 

Jacking has the highest precision 100% and the test FPS is up to 22.7. Moreover, the total 

accuracy gains 96.29%. In this experiment, by adopting YOLOv3 in Weizmann dataset, 

Jacking has the highest accuracy (100%), Jumping has the accuracy 91.74%, which is the 

lowest accuracy compared with other classes. 
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Figure 4.2.2 The training results by using YOLOv3 and the Weizmann dataset 

By adopting the YOLOv2 in Weizmann dataset, the overall accuracy is up to 92.71%. 

In this experiment, Jacking individually reaches the highest accuracy (100%), Jumping 

has the lowest accuracy 72.79%. Figure 4.2.3 shows the results of training processing, the 

training loss achieves 0.0096 after 17,000 epochs, where x-axis shows the iteration steps 

during the training, and y-axis represents the training loss of each iteration step. The test 

results by using YOLOv2 have 0.911 mAP; Jacking has the highest recognition rate 100%, 

the running behavior only achieves the lowest recognition rate 65.33%; the experiment 

carried out at the frame rate 31.3 per second.  
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Figure 4.2.3 The Weizmann training result by using YOLOv2 

 

Figure 4.2.4 The Weizmann training results by using DenseNet 
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 DenseNet was also utilized in the experiments with Weizmann dataset, the total 

accuracy of human behavior recognition is 92.62%, Jacking has the highest accuracy of 

100%, and Jumping achieved the lowest accuracy (69.91%) compared with other classes. 

Figure 4.2.4 shows the result of trained DenseNet, the training loss achieved 0.0133 after 

24,900 epochs. The test result by adopting DenseNet is 0.953 (mAP), Jacking has the 

highest precision 100%, Running behavior only achieves the lowest precision 90.83%, 

the FPS is up to 30.3 frames per second. 

 

Figure 4.2.5 The Weizmann training result by using ResNet 

The experiment using Weizmann dataset and ResNet has achieved the accuracy up 

to 91.40%, where Jacking has the highest accuracy (100%), and Jumping only achieved 

52.29% accuracy. Figure 4.2.5 shows the result of trained ResNet, the training loss 

achieved 0.0158 after 43,100 epochs. The test results of loss by adopting ResNet have the 

lowest 0.888 (mAP) compared with other three networks. Jacking has the highest 
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precision (100%) under this experimental condition; while Running behavior only has the 

precision 82.05%. The frame rate of human behavior recognition is up to 17.1 FPS. 

 

Figure 4.2.6 The Weizmann training result by using YOLOv4 

In the end, the experiment using YOLOv4 in Weizmann dataset has carried out the 

accuracy up to 97.36%, Jacking individually reaches 100% accuracy, and Jumping has 

the lowest accuracy (96.14%) compared with other classes. Figure 4.2.6 shows the result 

of trained YOLOv4, the training loss attained 0.3616 after 15,000 epochs. The test results 

of loss by adopting YOLOv4 have the highest 0.962 (mAP). Jacking has the highest 

precision (100%) under this experimental condition; while Skipping only has the 

precision 93.79%. The frame rate of human behavior recognition is up to 61.3 FPS. 
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Figure 4.2.7 ResNeXt and Attention mechanism training and validation loss during the training 

process by using Weizmann dataset 

Figure 4.2.7 exhibits the training and validation loss during the training process by 

using Weizmann dataset with ResNeXt and attention mechanism. The x-axis represents 

the training epoch and y-axis stands for the loss. From Figure 4.2.7, the deep learning 

models are able to achieve 89.286% total accuracy. Moreover, by adopting the attention 

mechanism into the deep learning models, which not only improve the accuracy without 

increasing the complexity of the parameters, but also reduce the number of 

hyperparameters. By adopting the attention mechanism, the results were becoming more 

robust. By combining the ResNeXt model with attention mechanism together, the 

accuracy reaches up to 98.724%. 

 

Figure 4.2.8 SKNet and Attention mechanism training and validation loss during the training 

process by using Weizmann dataset 
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Figure 4.2.8 shows the training and validation loss during the training process by 

using Weizmann dataset with the SKNet and attention mechanism. In Figure. 4.2.8, we 

witness that SKNet models are able to achieve 86.224% accuracy. Moreover, by 

combining the attention mechanism with the SKNet model, our results were becoming 

more robust and the accuracy and reach up to 97.194%.  

In these experiments, all our experiments necessitate large amount of computations, 

we chose batch size of 8 and learning rate 0.001. Moreover, the number of the epoch is 

set to 60. In Figure 4.2.8, the green dotes represent the training and validation accuracy, 

and the red dotes stand for the training and validation loss. 

 

Figure 4.2.9 The training and testing accuracy and loss by using CapsNet on Weizmann dataset 

Figure 4.2.9 shows the training/testing accuracy and loss during the training process 

by using Weizmann dataset with the CapsNet. In Figure. 4.2.9, we witness that CapsNet 

model is able to achieve 96.86% accuracy. Moreover, the orange line represents the 

training set; the blue line stands for the testing set; where the x-axis represents the 

training/testing steps, the y-axis shows the training/testing outcomes. In our experiment, 

the number of iterations is set to 10,000, the batch size is 8, and the learning rate is 0.001. 
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4.3 KTH Dataset 

These four deep neural models were utilized in KTH dataset. YOLOv3 achieves the 

highest mAP at 0.8458; YOLOv2 only having 0.8059 mAP is the lowest one compared 

to others. Figure 4.3.1 shows the training loss of each proposed models and DenseNet 

achieves the lowest training loss 1.85%. ResNet has the highest training loss 3.92%. 

 

Figure 4.3.1 The training loss via KTH dataset by adopting proposed models 

By using YOLOv3 in KTH dataset, it has 84% total accuracy; Walking individually 

achieved 97.14% accuracy, and Jogging can only achieve 42% accuracy. Figure 4.3.2 

shows the result of trained YOLOv3 in KTH dataset. The training loss achieves 0.0373 

after 28,800 epochs, where x-axis represents the iteration steps and y-axis shows the 

training loss of each step. By utilizing YOLOv3, the test results reach up to 0.8458 (mAP), 

the FPS is up to 22.7 frames per second. Boxing has the highest precision rate at 100%, 

meanwhile, Running has the precision 54% compared to other behaviors.  
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Figure 4.3.2 The KTH training result by using YOLOv3 

By utilizing YOLOv2 in KTH dataset, the total accuracy is 82.63%. Figure 4.3.3 

shows the result of trained YOLOv2 in KTH dataset, the training loss is 0.0231 after 

4,700 epochs. The testing result by using YOLOv2 only generated 0.8059 (mAP) which 

is the lowest one compared to other neural networks, the x-axis in Figure 4.3.3 indicates 

the iteration steps during the training, and y-axis shows the training loss for each step. 

Moreover, the FPS is up to 31.2 frames per second. Boxing has the highest precision 

(100%), but Running has the lowest one (44.60%) compared to other classes of behaviors. 

In this experiment, Boxing individually reaches 100% accuracy, and Jogging has the 

lowest accuracy of 66.39%  
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Figure 4.3.3 The KTH training result by using YOLOv2 

 By adopting DenseNet in KTH dataset, it has the accuracy 86.63%, Walking 

individually reaches the accuracy of 97.96%; Handwaving has the lowest accuracy of 

84.77%. Figure 4.3.4 shows the result of trained DenseNet in KTH dataset, the training 

loss is 0.0186 after 27,100 epochs, x-axis shows the iteration number in this experiment, 

and y-axis indicates the training loss. By adopting the DenseNet for this experiment, the 

result achieved 0.8446 (mAP) and the FPS is up to 32.3. Boxing has the highest precision 

(100%), while Running has the lowest one (63.46%). 
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Figure 4.3.4 The KTH training result by using DenseNet 

The experiment of KTH dataset by adopting the Resnet has the total accuracy 85.45%, 

Walking has the highest accuracy 98.41%, and Jogging only achieved 74.74% accuracy. 

Figure 4.3.5 shows the result of trained ResNet in KTH dataset, the training loss attains 

0.0392 after 15,700 epochs. By adopting the ResNet for this experiment, the testing result 

achieves 0.8383 (mAP), the FPS is only 16.4. In this experiment, x-axis represents the 

iteration steps during the training, y-axis shows the training loss in each iteration step. 

Boxing has the highest precision 100%, Running has the lowest one (64.38%) compared 

to other classes. 
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Figure 4.3.5 The KTH training result by using Resnet 

 The experiment of KTH dataset by adopting the CapsNet has the total accuracy 

97.67%. Figure 4.3.6 shows the training/validation accuracy and loss by adopting KTH 

dataset, the training loss attains 0.0192 after 10,750 epochs. By adopting the CapsNet for 

this experiment, Boxing has the highest accuracy 98.21%, Running has the lowest one 

(95.28%) compared to other classes. In this experiment, we chose the batch size 8 and the 

learning rate 0.001. Moreover, the orange line represents the training set; the blue line 

stands for the testing set; where x-axis represents the training/testing steps, y-axis 

represents the training/testing values. 
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Figure 4.3.6 The training/validation accuracy and loss during the training process by using 

KTH dataset 

 The experiment of KTH dataset by adopting the SKNet has the total accuracy 98.64%. 

The SKNet after combined with attention mechanism showed the positive result which is 

able to earn 99.79% accuracy. Compared with the two models, the accuracy grows 1.15%. 

Figure 4.3.7 shows the SKNet and Attention mechanism training and validation loss 

during the training process by using KTH dataset, the training loss attains 1.048 after 

16,830 epochs. By adopting the SKNet with attention module, Boxing has the highest 

accuracy 99.89%, Jogging has the lowest one (99.68%) compared to other classes. By 

adopting the ResNeXt model in KTH dataset, the total accuracy reaches 98.95%.  

    The ResNeXt after combined with attention mechanism showed the positive result 

which is able to earn 99.86% accuracy. Compared with the two models, the accuracy 

grows 0.91%. Figure 4.3.8 shows the ResNeXt and Attention mechanism training and 

validation loss during the training process by using KTH dataset, the training loss attains 

1.049 after 16,830 epochs. By adopting the ResNeXt with attention module, Boxing has 

the highest accuracy 100%, Running has the lowest one (99.06%) compared to other 

classes. In these experiments, we chose the batch size 8 and the learning rate 0.001. 

Moreover, the number of the epoch is set to 30. In these experiments, we chose the batch 

size 8 and the learning rate 0.001. Moreover, the number of the epoch is set to 30. In 

Figure 4.3.7 and Figure 4.3.8, the green dots represent the training and validation 
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accuracy, the red dots stand for the training and validation loss, and x-axis denotes the 

number of epochs, y-axis represents the accuracy/loss values. 

 

Figure 4.3.7 SKNet and attention mechanism training and validation loss during the 

training process by using KTH dataset 

 

Figure 4.3.8 ResNeXt and attention mechanism training and validation loss during the 

training process by using KTH dataset 
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4.4 Our Own Dataset 

From the experiments, ResNeXt achieved the total accuracy 98.697% on our own dataset 

Ⅰ, the ResNeXt with attention mechanism is able to gain 99.846% total accuracy which 

grows 1.149% compared with the ResNeXt model. Figure 4.4.1 shows the training and 

validation loss during the training process by adopting our own dataset Ⅰ with state-of-

the-art deep learning methods.  

 

Figure 4.4.1 ResNeXt and attention mechanism training and validation loss during the training 

process by using our own dataset Ⅰ 

 The SKNet model individually achieved 96.982% accuracy with the assistance of our 

own dataset Ⅰ; the SKNet after combined with attention mechanism shows the positive 

result which is able to earn 98.644% accuracy. Compared with the two models, the 

accuracy grows 1.662%. 
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Figure 4.4.2 SKNet and attention mechanism training and validation loss during the training 

process by using our own dataset Ⅰ 

Figure 4.4.2 shows the training and validation loss during the training process by 

adopting our own dataset Ⅰ with SKNet and SKNet with an attention mechanism. For 

better comparing the models based on various datasets, we selected Weizmann dataset 

and our own dataset Ⅰ. For both datasets, the number of classes is the same. The both 

datasets subsume the same static video frames. In our experiments, the number of epochs 

is 60, batch size is 8, and the learning rate is 0.001. 

The experiment of our dataset Ⅰ by adopting the YOLOv3 has the total accuracy 

96.37%, Jacking has the highest accuracy (100%), and Jumping only achieved 95.33% 

accuracy in this experiment. Figure 4.4.3 shows the result of trained YOLOv3 in our 

dataset, the training loss attains 0.0467 after 5,100 epochs. For this experiment, the test 

result achieves 0.952 (mAP), and the FPS is up to 34.1 frames per second. Jacking has 

the highest precision 100%, Skipping has the lowest one (91.61%) compared to other 

classes. 
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Figure 4.4.3 Our dataset Ⅰ training result by using YOLOv3 

 

Figure 4.4.4 Our dataset Ⅰ training result by using YOLOv4 
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    In this research, YOLOv4 in our dataset has the accuracy 97.36%, Jacking 

individually reaches 100% accuracy, and Skipping has the lowest accuracy (95.69%). 

Figure 4.4.4 shows the result of trained YOLOv4 in our dataset, the training loss is 0.3393 

after 5,300 epochs. By adopting the YOLOv4 for this experiment, the result achieved 

0.975 (mAP) and the FPS is up to 62.3. Jacking has the highest precision (100%), while 

Skipping has the lowest one (96.48%). 

 

Figure 4.4.5 CNN+LSTM training and validation losses during the training process by using our 

own dataset Ⅰ 

Figure 4.4.5 shows the training and validation losses based on our own dataset Ⅰ by 

using the model CNN+LSTM. Regarding CNN+LSTM, it got 98.53% accuracy based on 

our own dataset. In this experiment, the proportion between training and validation sets 

was set to 90:10. The number of epochs is assigned as 30 with 11,310 iterations, the batch 

size is 16, the learning rate is 0.0001. In Figure 4.4.5, x-axis represents the training 

iteration and y-axis stands for the accuracy; the blue dotes represent the training accuracy 

in each iteration, and black dotes show the validation accuracy in the top plot. For the 

bottom plot, x-axis represents the training iteration and y-axis stands for the loss; the 

orange dotes and black dotes refer to the training and validation loss. 
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Figure 4.4.6 The training/testing accuracy and loss during the training process by using 

CapsNet on our own dataset Ⅰ 

Figure 4.4.6 exhibits the training/testing accuracy and loss during the training process 

by adopting CapsNet on our dataset Ⅰ. From Figure 4.4.6, CapsNet individually achieved 

97.52% accuracy on our dataset Ⅰ. In this experiment, we chose the batch size 8 and the 

learning rate 0.001. Moreover, the orange line represents the training set; the blue line 

stands for the testing set; where the x-axis represents the training/testing steps, the y-axis 

represents the training/testing values. 

 

Figure 4.4.7 SKNet and attention mechanism training and validation losses during the training 

process by using our own dataset Ⅱ 
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 Figure 4.4.7 shows the training and validation losses by adopting our own dataset Ⅱ 

with SKNet and attention mechanism. From Figure 4.4.6, we see that SKNet models are 

able to achieve 97.95% accuracy. Moreover, by combining the attention model with the 

SKNet net, the accuracy reaches to 98.88%. Compared with these two models, the 

accuracy grows 0.93%.  

 

Figure 4.4.8 ResNeXt and attention mechanism training and validation losses during the 

training process by using our own dataset Ⅱ 

 Figure 4.4.8 shows the training and validation losses by adopting our own dataset Ⅱ 

with ResNeXt and attention mechanism. In Figure 4.4.7, ResNeXt individually achieved 

97.82% accuracy with the assistance of our dataset Ⅱ; ResNeXt after combined with 

attention mechanism is able to earn 98.19%. In these experiments, it requires large 

amount of computations, we chose the batch size 8 and learning rate 0.001. Moreover, 

the number of the epoch is set to 60. In both Figure 4.4.7 and 4.4.8, the green dots 

represent the training and validation accuracy, the red dots stand for the training and 

validation loss, x-axis denotes the number of epochs, y-axis represents the accuracy/loss 

values. 
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Figure 4.4.9 The training/testing accuracy and loss by using CapsNet on our own dataset Ⅱ 

 Figure 4.4.9 shows the training/testing accuracy and loss by using CapsNet on our 

own dataset Ⅱ. The CapsNet individually achieved 98.72% accuracy with the assistance 

of our dataset Ⅱ. Compared with the previous SKNet method, the accuracy grows 0.77%. 

Moreover, the orange line represents the training set; the blue line stands for the testing 

set; where x-axis represents the training/testing steps, y-axis shows the training/testing 

values. In our experiment, the number of iterations is set to 10,000, the batch size is 8, 

and the learning rate is 0.001. 

 

Figure 4.4.10 The training/validation accuracy and loss by using LSTM on our own dataset Ⅱ 
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 Figure 4.4.10 exhibits the training/validation accuracy and loss by using LSTM on 

our own dataset Ⅱ, where the blue line denotes the training accuracy; the orange line 

shows the training loss; the black dots denotes the training/validation accuracy and loss; 

x-axis represents the number of iterations and the y-axis stands for the values of the 

accuracy and loss. The LSTM attained 99.56% accuracy with the assistance of our dataset. 

In this experiment, due to the small dataset we use, the number of iterations is set to 380, 

the batch size is 4, and the learning rate is 0.001. We adopted CapsNet + LSTM model 

with class score fusion. 
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Chapter 5 

Discussions and Analysis 

 

 

In this chapter, discussion and analysis with respect to the outcomes of 

the experiments are clearly demonstrated and presented. Moreover, the 

comparisons between related work and our proposed methods will be 

discussed in this chapter. The demonstration of human behavior 

recognition based on the outcomes of deep learning methods will be 

addressed. Finally, the significance of this thesis will be also identified 

through analyzing the outcomes. According to the outcomes, the 

conclusion and future work will be addressed in the next chapter. 
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5.1 Discussions 

Throughout our experiments, we took use of two public datasets and four deep neural 

networks to compare the outcomes of our deep learning approaches. The previous work 

was implemented by using these two public datasets for human behavior recognition. 

From the previous work, visual features were extracted from various video frames, which 

were employed to represent human behaviors. However, traditional approaches mainly 

were implemented by using machine learning (ML) approaches so as to reduce the 

irrelevant or redundant features before classification. Typically, traditional approaches 

based on ML techniques cannot attain the recognition in real time and the processing is 

also time consuming. 

 

Figure 5.1.1 The examples of incorrect classification, the correct labels are (a) Running in 

Weizmann dataset, (b) Skipping in Weizmann dataset, (c) Jogging in KTH dataset, and (d) 

Running in KTH dataset. 

    Throughout our experiments, DenseNet has the highest accuracy of 0.953 (mAP), 

YOLOv3 has the highest accuracy of 96.29% by using Weizmann dataset, YOLOv3 has 

the highest mAP (0.8458) with the KTH dataset. By using Weizmann dataset, Jacking 

has the highest precision and accuracy amongst all experiments. Moreover, Boxing using 

KTH dataset has the highest precision within all experiments. However, if using 

Weizmann dataset, the precision and accuracy of Running and Skipping may not be 

robust, so do Running and Jogging in KTH dataset. The reason why we obtain the low 

precision is that we are using video frames as the training dataset, these behaviors may 

have similarities. Thus, during the tests, the results get lower than the expected. Figure 
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5.1.1 shows the examples of various behaviors which are incorrectly classified in two 

adopted datasets. 

As we know, deep learning shows its possibility to resolve the problem of human 

behavior recognition in real time. Table 5.1.1 compares traditional machine learning 

methods and deep learning methods for human behavior recognition in Weizmann dataset. 

Regarding YOLOv3, we achieved the highest accuracy 96.29%, the nearest neighbor 

classifier (NNC) has shown the accuracy 95.6% by using the global spatiotemporal 

distributions of interest points (Bregonzio, Gong, & Xiang, 2009). Moreover, pertaining 

to deep learning methods, they achieved the real-time recognition; meanwhile, traditional 

methods require human behavior recognition frame by frame. 

Table 5.1.1 The comparisons of machine learning and deep learning methods using 

Weizmann dataset 

  Walk Skip Run Jack Jump mAP Accuracy fps 

Deep 

Learning 

Methods 

YOLOv3 0.9916 0.9116 0.9066 1 0.9174 0.946 0.9629 23.3 

YOLOv2 0.9878 0.9699 0.6533 1 0.9428 0.911 0.9271 32.3 

DenseNet 0.9758 0.9552 0.9083 1 0.9250 0.953 0.9262 31.3 

ResNet 0.9313 0.8377 0.8205 1 0.8508 0.888 0.9140 17.0 

Modified 

YOLOv3 

0.94 0.94 0.97 1 0.97 0.964 0.953 24.7 

Machine 

Learning 

Methods 

ANN 0.904 0.942 0.923 0.962 0.904 0.927 - - 

Decision 

Tree 

0.9615 0.8667 0.9808 0.9808 0.9231 0.942 - - 

NNC 1 0.78 1 1 1 - 0.956 - 

SVM 1 0.67 1 1 1 - 0.934 - 
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Table 5.1.2 The comparisons of different methods in KTH dataset 

  Walk Run Box Handclap Jog Handwave mAP Accuracy FPS 

Deep 

Learning 

Methods 

YOLOv3 0.9967 0.5400 1 0.8590 0.7323 0.9467 0.8458 0.8400 22.7 

YOLOv2 0.9727 0.4460 1 0.8280 0.6385 0.9500 0.8059 0. 8263 31.2 

DenseNet 0.9703 0.6346 1 0.8489 0.6220 0.9919 0.8446 0. 8663 32.3 

ResNet 0.9773 0.6438 1 0.8711 0.6628 0.8748 0.8383 0. 8545 16.4 

3D-CNN 0.97 0.79 0.9 0.94 0.84 0.97 - 0.902 - 

Machine 

Learning 

Methods 

LF+SVM 0.838 0.549 0.979 0.597 0.604 0.736 - 0.717 - 

Linear 

SVM+LTP 

0.90 0.86 0.98 0.95 0.76 0.96 - 0.742 - 

Histograms of 

spatio-temporal 

gradients 

0.969 0.969 0.938 1 0.781 1 - 0.942 - 

SVM+HOG 0.924 0.930 0.941 0.910 0.914 0.930 - 0.9248 - 

AdaBoost + 

C.45 

0.850 0.780 0.960 0.838 0.820 0.690 - 0.823 - 

KTH as the most popular and active public dataset has been well investigated. In 

Table 5.1.2, we compare the traditional machine learning methods and deep learning 

methods for human behavior recognition using KTH dataset. In our experiments, 

DenseNet achieved the accuracy 86.63%. 3D-CNNs extracts spatiotemporal features by 

conducting 3D convolutions which have the highest accuracy (90.2%) (Ji, Xu, Yang, & 

Yu, 2013). Moreover, Ivan et al. proposed a histogram of gradients with a greedy 

matching method to recognize human behavior which achieved accuracy 94.2%. Because 

human behaviors have the similar local spatiotemporal events, which lead to 

misclassifications (Laptev & Lindeberg, 2004). Moreover, human behavior recognition 
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is implemented with the accuracy 92.48% by adopting SVM with HOG features 

(Jagadeesh & Patil, 2019). 

The results show that both traditional machine learning methods and deep learning 

methods have succeeded in human behavior recognition. However, through literature 

review, the traditional machine learning methods may have the best accuracy on human 

behavior recognition, but it requires preprocessing, segmentation, and feature extraction; 

it cannot achieve the recognition in real time. 3D-CNN model was proffered which has 

the highest accuracy (90.2%), the model takes use of not only the spatial information of 

video frames, but also the temporal information which was also captured by using 

multiple consecutive frames. The 3D-CNN model implements real-time recognition 

which shows the performance in the real scenes. 

5.2 Contributions 

For the past decades, human behavior recognition dominantly took use of traditional 

machine learning methods. Our contribution of this research work is to implement the 

modern methods by using end-to-end models, we achieve real-time human behavior 

recognition without using frame-by-frame way. Moreover, a powerful GPU is configured 

to accelerate the processing so as to achieve time efficiency. During the experiment, 

YOLOv3 gained the highest accuracy based on the public dataset. Meanwhile, we modify 

YOLOv3 (Lu, Yan & Nguyen, 2018) by decreasing the convolutional layers to increase 

the processing speed which also has 95.3% accuracy. 

In these experiments, by harnessing the single deep learning model to recognize the 

human behavior, YOLOv3 got the highest accuracy 96.29% with Weizmann dataset; 

DenseNet gained 86.63% accuracy. However, for the single behavior recognition by 

using KTH dataset was low, the reason is that a number of behaviors may have similarities.  

In this research project, we implement four deep learning models with positive 

results. During the experiment, YOLOv3 reached the highest accuracy based on the 

public dataset. Meanwhile, we modify YOLOv3 (Lu, Yan & Nguyen, 2018) by 
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decreasing the convolutional layers so as to increase the speed, it has the accuracy 95.3%. 

The proposed method aims to recognize human behavior in indoor environment for public 

security in real time. 

Table 5.2.1 The comparisons of deep learning methods and ensemble learning method in 

Weizmann dataset 

Weizmann Dataset  Walk Skip Run Jack Jump Accuracy 

Deep Learning 

Methods 

YOLOv3 0.9674 0.9571 0.9327 1 0.9174 0.9629 

YOLOv2 0.9680 0.9149 0.9423 0.9923 0.7279 0.9271 

DenseNet 0.9798 0.9275 0.9167 1 0.6991 0.9262 

ResNet 0.9879 0.9348 0.9057 1 0.5229 0.9140 

Modified 

YOLO3 

0.9750 0.9330 0.9240 0.9980 0.7160 0.9530 

CapsNet 0.9697 0.9539 0.9695 1 0.9499 0.9686 

Ensemble Learning 

Methods 

AdaBoost + Naïve Bayes 1 0.956 0.927 1 0.895 0.9713 

AdaBoost + Random 

Forest 
1 0.978 0.951 1 0.895 0.9776 

Bagging + Naïve Bayes 1 0.956 0.902 1 0.842 0.9617 

Bagging + Random Forest 1 0.911 0.951 1 0.978 0.9776 

To the best of our knowledge, it is the first time we proposed an ensemble learning-

based method to recognize human behavior by using Weka Ver.3 to combine these four 

models together, which gained much better results. In our experiments, we took use of 

two different ensemble learners to evaluate the results. Table 5.2.1 and Table 5.2.2 show 
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the comparisons between the deep learning methods and ensemble learning methods 

based on public datasets. Bagging classifier with random forest got 98.8% accuracy is 

12.17% higher than single model recognition. AdaBoost classifier with random forest 

was able to get 98.71% accuracy with KTH dataset. By combining Bagging learners 

together with random forest based on Weizmann dataset, the final accuracy has been 

achieved 97.76%.  

In these experiments, various deep learning methods are applied to recognize human 

behaviors, which achieved promising results. YOLOv3 achieved 84% accuracy in KTH 

dataset, walking has the highest accuracy of 97.14%; YOLOv2 was able to get 82.63% 

accuracy; By adopting CapsNet in KTH dataset, the accuracy reaches 97.67%, 

handwaving has the highest accuracy of 98.86%. The combination of ResNeXt with 

attention mechanism reaches highest accuracy (99.86%) by using KTH dataset, which 

has 0.91% growth compared with only adopt ResNeXt model. By combining SKNet with 

attention mechanism, the recognition accuracy reaches 99.79%, which has 1.15% growth 

compared with SKNet. 

Table 5.2.2 The comparisons of deep learning methods and ensemble learning method in 

KTH dataset 

KTH Dataset  Walk Run Box Handclap Jog Handwave Accuracy 

Deep Learning 

Methods 

YOLOv3 0.9714 0.9589 0.9282 0.8851 0.4200 0.8724 0.8400 

YOLOv2 0.9602 0.8855 0.8166 0.7895 0.6639 0.8421 0. 8263 

DenseNet 0.9796 0.9206 0.8481 0.8887 0.7136 0.8477 0. 8663 

ResNet 0.9841 0.8674 0.8511 0.8375 0.7474 0.8393 0. 8545 

CapsNet 0.9854 0.9628 0.9821 0.9739 0.9674 0.9886 0.9767 

SKNet 0.9887 0.9806 0.9968 0.9869 0.9883 0.9771 0.9864 
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SKNet + Attention 0.9974 0.9979 0.9989 0.9979 0.9968 0.9985 0.9979 

ResNeXt 0.9964 0.9878 0.9906 0.9866 0.9899 0.9857 0.9895 

ResNeXt + 

Attention 
0.9987 0.9966 1 0.9985 0.9986 0.9992 0.9986 

Ensemble Learning 

Methods 

AdaBoost  

+ Naïve Bayes 

0.9980 0.8820 1 0.9920 0.9480 1 0.9834 

AdaBoost + 

Random Forest 
0.9980 0.8850 1 1 0.9700 1 0.9871 

Bagging  

+ Naïve Bayes 

0.9980 0.8820 1 0.9920 0.9810 0.9840 0.9861 

Bagging + Random 

Forest 
0.9980 0.8550 1 1 0.9750 1 0.9880 

Compared with the previous work, the state-of-the-art models in deep learning with 

attention mechanism show much stable and robust in human behavior recognition. Table 

5.2.3 shows the comparison of different deep learning models in human behavior 

recognition by using a different dataset. 

YOLOv3 for human behavior recognition was implemented which achieved 96.29% 

accuracy which was the highest result in our research study. In Table 5.2.3, the state-of-

the-art models in deep learning with attention mechanism have the most positive results 

for human behavior recognition, ResNeXt with attention mechanism is able to achieve 

98.724% total accuracy which is 2.434% higher than previous YOLOv3 model, SKNet 

with attention mechanism achieved up to 97.194% total accuracy and it has 0.904% 

growth of the total accuracy compared with the previous YOLOv3 model. YOLOv4 for 

human behavior recognition reaches the highest result based on Weizmann dataset which 

has 97.36% accuracy; based on our own dataset, it has up to 97.36% accuracy. 
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Table 5.2.3 The comparison of different deep learning models in human behavior recognition 

Methods 

ResNeX

t + 

Attentio

n 

ResNe

Xt 

SKNet 

+ 

Attentio

n 

SKNet ResNet 

DenseN

et 

YOLOv

2 

YOLOv

3 

YOLOv

4 

Weizman

n Dataset 

Total 

Accurac

y 

98.724

% 

89.286

% 

97.194

% 

86.224

% 

91.400

% 

92.620

% 

92.710

% 

96.290

% 

97.360

% 

Precisio

n 

95.000

% 

89.000

% 

93.000

% 

85.000

% 

88.800

% 

95.300

% 

91.100

% 

94.600

% 

96.200

% 

Our 

Dataset 

One 

Total 

Accurac

y 

99.846

% 

98.697

% 

98.934

% 

98.677

% 
- - - 

96.370

% 

97.360

% 

Precisio

n 
100% 

95.000

% 
100% 

99.000

% 
- - - 

95.280

% 
97.50% 

Moreover, we took use of LSTM network to extract the temporal information (Lu, 

Yan, & Nguyen, 2020), YOLO methods were employed to extract the spatial information, 

finally we combine these two networks together by using score fusion and our own 

datasets. Table 5.2.4 illustrates the comparison of different deep learning methods on our 

dataset I.  

Table 5.2.4 The comparison of different deep learning methods on our dataset Ⅰ 

Our Dataset One Walk Skip Run Jack Jump Accuracy 

YOLOv3+LSTM 97.28% 96.41% 98.46% 100% 95.76% 97.58% 

YOLOv3 96.55% 92.15% 97.82% 100% 95.33% 96.37% 

YOLOv4+LSTM 98.13% 97.04% 98.12% 100% 96.06% 97.87% 

YOLOv4 97.53% 95.69% 97.79% 100% 95.79% 97.36% 

CapsNet 97.66% 97.84% 97.36% 100% 94.74% 97.52% 

CapsNet + LSTM 98.44 97.95% 97.86% 100% 96.80% 98.21% 
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Throughout our experiments, we took use of various deep learning methods to 

compare our experimental results. The deep learning models with attention mechanism 

are much stable and robust by adopting our own datasets. In this research project, by 

combining the YOLOv3 and LSTM together to extract both spatiotemporal information, 

we are able to achieve the accuracy 97.58%, which has 1.21% growth compared with 

only extracting spatial information by using YOLOv3 on our own dataset I. Moreover, 

YOLOv4 gets the accuracy 97.36%. By combining YOLOv4 with LSTM, the total 

accuracy is up to 97.87%. The CapsNet individually achieved 97.52% accuracy; by 

combining CapsNet and LSTM with the class score fusion, it achieved 0.69% growth on 

our dataset I. With regard to this network structure on our dataset II, the result reached up 

to 96.42% accuracy.  

Table 5.2.5 The results of different deep learning methods on our dataset II 

Our Dataset Two Hello Nice Meet You Accuracy 

DenseNet 95.23% 93.82% 95.28% 94.11% 94.61% 

ResNet 94.77% 93.27% 94.89% 91.83% 93.69 % 

YOLOv3 94.35% 95.26% 96.71% 97.12% 95.86 % 

YOLOv4 96.37% 97.49% 97.55% 98.35% 97.44% 

ResNeXt 96.87% 98.64% 98.25% 97.52% 97.82% 

ResNext + Attention 97.63% 98.66% 98.36% 98.11% 98.19% 

SKNet 97.89% 97.02% 97.93% 98.96% 97.95% 

SKNet + Attention 98.91% 98.64% 98.93% 99.04% 98.88% 

YOLOv3 + LSTM 97.28% 97.79% 95.33% 95.28% 96.42% 

CapsNet 98.76% 98.96% 98.94% 98.22% 98.72% 

CapsNet + LSTM 99.24% 98.53% 99.45% 98.62% 98.96% 
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Table 5.2.5 shows the results of different deep learning methods on our dataset II. 

SKNet net with attention mechanism shows positive results on our own dataset II. The 

network of SKNet with attention mechanism is able to get 98.88% accuracy which has 

5.19% growth of the total accuracy compared with the traditional deep learning ResNet 

model. CapsNet reaches 98.72% accuracy by adopting our own dataset II. The 

combination of CapsNet with LSTM is able to achieve 98.96% total accuracy of 

recognition rate, which has 2.54% increasing compared with YOLOv3 + LSTM and 0.24% 

growth compared with only extracting spatial information by adopting CapsNet. 
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Chapter 6 

Conclusion and Future Work 

 

 

In this thesis, in-depth articulation of the proposed deep learning 

methods was discussed which is utilized to recognize human behavior 

in real time. The corresponding state-of-the-art methods in deep 

learning have been implemented as the results of this thesis. In this 

chapter, we will present this thesis at a scholarly level, also highly 

organize and integrate the conclusion into the context, meanwhile the 

future work will be listed by the end of this thesis. 

 

  



129 
 

6.1 Conclusion 

The objective of this thesis is to develop the algorithms for human behaviour recognition 

from surveillance videos and utilize the state-of-the-art methods in deep learning by 

attaining this goal. In this thesis, we demonstrated these deep learning models are 

employed for human behaviour recognition which are faster than the traditional machine 

learning approaches, they also are able to achieve real-time recognition. The main 

contributions are summarized below. 

In this thesis, we have presented multiple deep learning models to fulfil human 

behavior recognition. Throughout our experiments, we see deep learning methods are 

well implemented in this research project. Based on our experiments, the results were 

already up to 90% for the well-selected datasets. Throughout the experiments, the overall 

results were positive, but the proposed models may have a bit of misclassifications in 

particular behaviours such as “skip/run” in Weizmann dataset and “jog/run” in KTH 

dataset. The combination of ResNeXt with attention mechanism and SKNet with attention 

mechanism also shows the positive outcomes in human behaviour recognition. By adding 

the attention mechanism, the results are also promising. Moreover, by adopting the 

YOLO methods, LSTM network with class score fusion to acquire both spatiotemporal 

information also indicates positive results, which has 1.21% growth of accuracy by only 

using YOLOv3 network.  

From the experimental outcomes, we see that most of deep learning models could be 

extended through either the depth or width of the network layers so as to improve the 

accuracy of our methods. However, convolution-based deep learning uplifts the 

efficiency without beefing up the complexity. It trims off the number of the 

hyperparameters and enhances the representation of the network. Meanwhile, YOLOv4 

+ LSTM network is also outperformed in this thesis. 

In this research project, we proposed a spatial attention-based SKNet model. 

According to the research outcomes, by utilizing the attention mechanism, it shows the 
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positive result in human behavior recognition. YOLO + LSTM network is also proposed 

in this research work. After the experiments, the result shows that by coping with the 

sequence data, the temporal information should be further investigated.  

Moreover, to the best of our knowledge, it is the first time we proposed a method for 

human behavior recognition based on ensemble learning by using WEKA (ver3). We took 

use of two different ensemble learners to evaluate the results based on public datasets. By 

combining bagging learners with random forest together, both public datasets show that 

the results are stable and robust. Finally, we collected our own datasets and compared 

them with public dataset to test the stability and robustness of the proposed models. 

6.2 Future Work 

Our future work includes, 

(1) How to reduce the misclassification will be investigated in future. The attention 

mechanism should be considered in LSTM network in the near future to make 

our model more robust and stable. Adding the attention model into the LSTM to 

the specified parts of the inputs that is thought as important, which improves the 

performance of the neural network model. This idea is based on the attention 

scores that can be used in image captioning and machine translation, so there has 

a way to solve the misclassification problem. 

(2) From the research outcomes, we see that the attention mechanism is able to 

integrate any CNN architectures. Thus, YOLOv3 with attention mechanism will 

be also probed in the future. The attention mechanism in this case means by 

adopting the YOLOv3 model and the Convolutional Block Attention Module 

together. The original paper of CBAM mentioned that the module is able to be 

integrated into any CNN architectures seamlessly with the end-to-end structure. 

The next stage is to combine the attention mechanism into the YOLOv3 network. 

For the YOLOv3 network structure, it contains 5 groups of residual units, we 

hope to insert the attention module into each unit. 
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(3) We will mingle channel attention module and spectrum into our model in order 

to achieve better accuracy in human behavior recognition. In this research work, 

we only chose the spatial attention which is used to emphasise on those important 

features and suppress unnecessary ones to improve the representation of networks. 

Thus, we hope that in the future, the channel attention will be implemented in our 

research. The channel attention focuses on what is meaningful given an input 

image, so when we are dealing with the multiple objects, it can be more useful to 

extract feature maps. Moreover, more different types of data can be studied in 

future to make our research more suitable in different scenarios, such as depth 

maps, IR data and thermal spectrum data. 

(4) Our deep learning methods for human behavior recognition such as CapsNet, 

ShuffleNet (the computation-efficient CNN for mobile devices), and NasNet will 

be explored and exploited in the future. The simulated neurons of spiking neural 

networks (SNNs) are more realistic, it is also good at the sequence data; in 

addition, it should be taken into considerations of the temporal information. 

Moreover, there is not much relevant research right now. 

(5) During the research time and the limitation of computation, we will work for 

multiperson behaver recognition in the future. In addition, more complex human 

behaviors with multi-person interactions such as talking, fighting, robbery etc. 

will be explored in the future.  
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