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"All the mathematical sciences are founded on relations between physical laws and 

laws of numbers, so that the aim of exact science is to reduce the problems of nature to 

the determination of quantities by operations with numbers." 

 

James Clerk Maxwell, On Faraday's Lines of Force, 1856 
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ABSTRACT 

Athletes, coaches, sport scientists and managers need objective assessment of changes 

in competitive performance to provide evidence for guiding athletes’ development, for assessing 

programme effectiveness, and for supporting decisions regarding allocation of funds in sports 

campaigns. This PhD is focused on the development of analytical tools using the Statistical 

Analysis System (SAS) software for assessing changes in competitive performance.  

The topic of variability of competitive performance is reviewed first, because estimates of 

variability provide thresholds of magnitude for assessing important changes in performance. Five 

original-research studies are then presented for assessing performance changes in five levels of 

performance: athlete, sport, team, country squad and all Olympic sports of a country. First, mixed 

linear modelling was used to develop individual career trajectories of triathletes while accounting 

for environmental and other external factors. This analytical tool allows evaluation and 

comparison of athletes against the typical performance progression of successful elite triathletes. 

Secondly, linear performance trends with calendar year were evaluated using a mixed modelling 

approach to investigate progression of mean performance times for the sport of triathlon providing 

coaches and support staff with the current state of the sport. Thirdly, improvement of a football 

team's performance was quantified using generalised mixed linear modelling to assess the 

effectiveness of a youth-talent development programme. The focus of the fourth investigation 

was the development of a country score to provide a more comprehensive measure of 

performance than measures based on medal counts. These scores were derived by properly 

combining each country’s athletes’ world rankings. Finally, performance progression of individual 

athletes and teams over an Olympic quadrennium was assessed using linear regression of 

athletes’ placings at annual main competitions. The analysis also provided a measure to evaluate 

under- and over-achievement at Olympics. 

In this thesis, general and generalized linear and mixed linear models proved to be 

appropriate for modelling changes in sport competitive performance. Further investigation is 

required to extend the models presented here to other sports and to explore non-linear models 

for analysis of competitive performance.    
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CHAPTER 1 

INTRODUCTION 
 

1.1. Rationale 

Monitoring performance is an integral component of many domains of human endeavour.  

It is often associated with business or engineering software as an important tool to generate 

objective data to judge success or failure of investments and applications. In both cases, only 

when properly informed, management can adopt strategies to further improve performance.  A 

similar scenario is present in sport.  

Green and Oakley (2001) identified ten determinants of success of a “western” elite sport 

system (Table 1). Items 3, 8 and 9 highlight the importance of monitoring different levels of sport 

performance for evidence-based decisions. In common with many other national sports 

organizations, High Performance Sport New Zealand has identified on-going need of such 

evidence-based decisions, and is therefore promoting the development and implementation of 

monitoring system and evaluation of sport performance (HPSNZ, 2012). Establishment of athlete 

development pathways, identification of effects of training strategies and monitoring sports 

campaigns are examples of areas requiring such analysis of performance. The intended 

outcomes would provide a better understanding of athlete development, quantification of factors 

affecting sport performance and optimisation of investment for performance achievements. 

 

Table 1. Green and Oakley’s characteristics of elite sport development systems (Green & 
Oakley, 2001) 

1. Role clarity for the agencies involved and effective communication 
2. Simplicity of administration through common sporting and political boundaries 
3. Statistical identification and monitoring of the progress of talented and elite athletes 
4. Provision of sports services to create a culture of excellence in which all members if 

the team (athletes, coaches, managers and scientists) can interact 
5. Well-structured competitive programmes with on-going international exposure 
6. Well-developed facilities with priority for elite athletes 
7. Targeting resources on focus sports, with real chance of success at world level 
8. Comprehensive planning for each sports needs 
9. Recognition that excellence costs, funding appropriately  people and infrastructure 
10. Lifestyle support during and post elite athlete’s career  
 

Performance of a sport system can be evaluated in different ways, but HPSNZ believes on 

a “performance-based system that has accountable outcomes” (HPSNZ, 2012). Consequently, 

performance of athletes, coaches, managers and support staff are judged ultimately by athletes’ 

successes or failures at competitions.  
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1.2. Objectives 

My aim in this PhD has been to develop analytical models for tracking changes of sport 

competitive performance over a period of years, building on previous research and addressing 

their limitations. Models for tracking changes in competitive performance will provide coaches, 

support staff and high performance directors with objective information to support evidence with 

regards of athlete’s development, defining benchmarks and  consequently identifying the gap 

between their athletes and their competitors, and identifying successful sport campaigns.  

The research question of modelling changes in competitive performance has been 

answered by designing models for tracking changes for the different levels of sport competitive 

performance: athlete, sport, team, country squad and all Olympic sports of a country. I focused 

only on athletic competitive performance, because such performances are the ultimate measure 

of success.  

The analytical models have been developed based on linear models, by assuming a 

(generalised) linear relationship of competitive performance, the dependent variable, with the time 

predictors, age or calendar year. Furthermore, in order to establish the link between research and 

applied sport, the developed models for analysing competitive performance have been integrated 

into practical applications and reports which have provided coaches and high performance 

managers with objective assessment of performance. 

 

1.3. Literature Review 

Scientific research on monitoring (or tracking) changes in competitive performance has 

been limited and has been focused mainly in changes in the mean performance of a group of 

athletes and in changes in world records over time. Tracking mean performance of a group of 

athletes over a number of years provides information on trends and developmental stage of 

sports, reflecting the impact of new training strategies, advance in sport science and impact of 

technology and equipment (El Helou et al., 2010; Haake, Foster, & James, 2013). While 

progression of world records has been investigated mainly in relation to evolution of human 

capacity and potential limits to human performance (Berthelot et al., 2008; Nevill & Whyte, 2005).  

Limited research has been performed on assessment and quantification of individual 

athletes’ careers. Balyi (2001) proposed a five-stage model to explain the long-term development 

of an athlete (LTDA) in a sport such as track-and-field athletics. The five stages included an initial 

development of fundamental skills up to age of 10 years; followed by a period of training to train 

when athletes learn the basic skills of the specific sport; after the of age ~14 years athlete 

developed their competitive skills, during the stage called train to compete; followed by the elite 

career period where athletes train to win and peak their performance at competitions. The final 

stage is the retirement. Research on tracking changes of individual athletes’ performances at 

competitions has been developed for baseball (Albert, 2002), cross-country skiing (Alam, Carling, 

Chen, & Liang, 2008), skeleton (Bullock & Hopkins, 2009), swimming (Allen, Hopkins, & 

Vandenbogaerde, 2012; Berthelot et al., 2012; Pike, Hopkins, & Nottle, 2010), tennis (Guillaume 
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et al., 2011) and track-and-field athletics . Depending on the sport the modelled measures of 

performance were time, distance, speed, baseball player performance score and annual 

percentage of tennis matches won. The different authors used several models to describe 

changes in performance. Alam et al. (2008), focused on stage 2 and 3 of LTDA model, used a 

sigmoid function of age to describe the effects of puberty in speed cross-country skiing. A double 

exponential function of age was used to track performance changes up to retirement for top tennis 

players (Guillaume, et al., 2011) and from junior ages to master ages in track-and-field athletics 

and swimming (Berthelot, et al., 2012). In the other studies, performance was explained by a 

quadratic function of age, describing progression of athletes’ performance mainly in stage 3 and 

4 of LTDA model. The majority of the studies, with exception of skeleton (Bullock & Hopkins, 

2009) and cross-country skiing (Alam, et al., 2008), involved sport performances with relatively 

stable competition environments, therefore with no consideration for effects of environmental and 

other external factors in performance. Furthermore, in some studies repeated measurements on 

athlete were not taken into account, because authors either did not specify it in the model (Alam, 

et al., 2008) or produced an individual fit for each athlete (Berthelot, et al., 2012; Guillaume, et 

al., 2011). There is therefore a need to develop a model to describe the relationship of competition 

performance with age over an athlete’s career with adjustment for environmental and other 

course-related factors and accounting for repeated measurement.  

The relationship of performance changes with age has been investigated commonly in 

cross-sectional studies by tracking mean performance of top athletes in each age group, for a 

large range of sports (Bernard, Sultana, Lepers, Hausswirth, & Brisswalter, 2010; Bird, Balmer, 

Olds, & Davison, 2001; Etter et al., 2013; Guillaume, et al., 2011; Lepers & Maffiuletti, 2011; Rüst, 

Knechtle, & Rosemann, 2012; Stevenson, Song, & Cooper, 2012). This resulting relationship 

between performance and age represents the relationship for an ideal athlete, always consistently 

among the top performers for all ages and not the typical relationship of a top individual athlete.  

Tracking mean performance of a group of athletes over the years has also been applied 

for evaluating calendar year trends in a sport and investigate gender differences, often with 

performances at world championships (El Helou, et al., 2010; Knechtle, Knechtle, & Lepers, 2010; 

Lepers, 2008; Wainer, Njue, & Palmer, 2000), Olympic Games (Radicchi, 2012) or the best 

performances within a year (Haake, et al., 2013). These studies were performed in a cross-

sectional fashion, regardless of the identity of athletes and therefore ignoring the fact that the 

same athletes may be represented in different years. There has been a similar disregard of athlete 

identity in the investigation of progression of world records (Desgorces et al., 2008; Kuper & 

Sterken, 2003; Lippi, Banfi, Favaloro, Rittweger, & Maffulli, 2008; Nevill & Whyte, 2005; Wainer, 

et al., 2000). The majority of these studies has been on track-and-field athletics and swimming; 

not only because of the availability of the data but also because the reliability of the performance 

measures. Statistical models to represent the relationship between performance and time varied 

depending on the study. While in some studies, linear model were deemed appropriate to 

represent the trend of progression of performance (Tatem, Guerra, Atkinson, & Hay, 2004; 

Wainer, et al., 2000), for other time windows more complex models, such as exponential 

relationships (Haake, et al., 2013; Kuper & Sterken, 2003; Nevill & Whyte, 2005) were needed to 
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represent  the “natural limit” of performance. Haake and colleagues (Haake, et al., 2013) provided 

a summary table of the several mathematical models used to describe the relationship of 

progression of performance and time. It is still unclear what defines the best model and there 

appear to be several issues in the choice of the model. First, the relationship of performance and 

time depends on the time window of analysis. Secondly linear models may show the global trend 

of progression for performance and time by providing, for example, estimates of rate of 

improvement (or decline). It is however unrealistic to extrapolated these linear trends to derive 

performances in the distant future (Reinboud, 2004). Thirdly, more complex models may produce 

better fitting of the data, but the resulting relationships may be difficult to derive information useful 

for a practical setting. 

Progression of individual athletes and changes in the overall sport are important, but 

managers, media and public are also interested in progression of countries, particular after each 

Olympic Games. Research on long-term assessment of countries performance in a sport and/or 

in a big sport event, such as the Olympic Games, has been limited. These assessments are often 

based on the number of medals, and many ways have been suggested to combine the different 

medal colours (Blight & Rogers, 2012; Seiler, 2013; Steiler, 2010; Wood, 2012) or accounting for 

other socio-economic factors, such as total country population (Putt, 2013). Although important, 

these measures provide only an assessment of podium performances. There is a need to provide 

more comprehensive measures of competitive performance, rewarding also non-medal 

performances and improvement over an Olympic quadrennium. These assessments will provide 

coaches and managers with more information about a country’s talent base, enabling a more 

strategic view for planning future athletes’ careers. 

 

1.4. Methodological Approach 

This thesis is centred on progression or tracking changes of competitive performance. 

Before quantifying changes, there is a need to identify the measure of performance. I have limited 

my research to competitive performance (performance outcomes at competitions), because these 

are the performance outcomes that an athlete is ultimately judged on. Measures of performances 

used as dependent variables were triathlon times, soccer scores, world ranking of swimmers and 

athletes’ placings at annual main competition. 

A measurement of any quantity is only ever an estimate of its true value, because the 

measurement includes an error term. A measurement of performance is determined by the true 

value of ability with additional contribution of external factors affecting performance and a random 

error term. Errors and effects of external factors in performance are inherent to any measurement 

and determine the magnitude of the uncertainty of estimates around the true value. It is therefore 

important to understand that in a sport, the measure of performance is only a surrogate of the 

true athlete, team or country’s ability. 

For the different studies on performance progression, I have used different modalities of 

linear models to accommodate the different types of performance outcomes and to account for 
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the different sources of errors and effects of external factors on sport performance. For this 

purpose, I have explored the different linear models available in the Statistical Analysis System 

(SAS) software for modelling the progression of competitive performance in my original research 

articles. 

Linear models are the first choice in data analysis because of the availability of well-

developed analytical procedures in statistical packages. Linear models also allow a direct 

interpretation and quantification of the effect of a predictor on a dependent variable from the 

coefficients (parameters) in the equation representing the model (W.G. Hopkins, 2010). 

Furthermore, the additive nature of linear models allows quantification of effect of predictors on a 

dependent variable while adjusting for effects of other predictors (moderators and mediators) 

(W.G. Hopkins, 2010); for example, adjusting for the effect of altitude on performance in track and 

field athletics (Hollings, Hopkins, & Hume, 2012). Mixed models are a particular modality of linear 

models that I have used frequently in my research. In mixed models the dependent variable is 

explained by fixed effects and random effects (Truxillo et al., 2012). Fixed effects are predictors 

that affect the entire population (or subgroup of the population) in the same way, and whose levels 

in the model are all the possible levels in the population. Random effects are predictors whose 

levels are a random sample of all the levels in the population. Random effects are used only when 

there is a need to account for repeated measurements or clustering within each level of the 

random effect (e.g., repeated measurements for each athlete). The solution for the random effects 

represents the deviation of such clusters (e.g., performances of an individual athlete) after 

adjustment for all other effects in the model. These complex models account, therefore for 

different sources of error and effects of factors affecting sport performance within athletes (W.G. 

Hopkins, 2003), providing estimates of individual responses and quantification of performance 

change for individual athletes and individual teams. Additionally, mixed models allow for analysis 

of dataset with missing values, where conventional analysis of variance would fail (W.G. Hopkins, 

2003). 

1.5. Thesis Structure 

This thesis is organized in eight chapters (Figure 1). The first and present chapter provides 

the rationale, objectives, methodological approach and overview of the research on tracking 

performance changes that positions the reader for what follows. This chapter is not intended to 

be a full literature review of this thesis, because each chapter contains a review of the relevant 

literature for the performance measure and model analysed. 

The most important chapters consist of a systematic review and five original-research 

studies. Each chapter starts with an overview and it consists of the publishable manuscript (either 

in print, Chapter 3, 5 and 6; submitted for publication, Chapter 2 and 4; or ready for publication 

but currently under embargo, Chapter 7). All the original-research studies were non-

interventional, and data for the analyses were available online, therefore no ethics approvals were 

required.   
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Each of the five original studies represents an application of mixed linear models for 

tracking different levels of competitive performance: athlete, sport, team, a national squad and all 

of a country’s Olympic sports. The sports investigated in this thesis (triathlon, football, swimming 

and all the country’s Olympic sports) were chosen mainly because support staff of such sports (in 

HPSNZ and ASPIRE) had identified the need for such models and believed that data currently 

available would provide useful information towards monitoring and planning athletic performance. 

In Chapter 2, the topic of variability of competitive performance of elite athlete is reviewed. 

I have done a systematic review of this topic, because estimates of variability provide the 

thresholds for assessing magnitude of performance changes and estimation of variability is one 

application of mixed modelling. This literature review is intended to be a stand-alone publishable 

article, in a define topic related but not necessarily encompassing the entire thesis. 

Chapter 3 is the first of my original-research studies on progression of competitive 

performance. Here, I have presented a model for deriving career trajectories of elite triathletes, 

by tracking triathletes’ performance times while accounting for effects of environmental and other 

course-related factors. Using a similar modelling approach to account for effects of environmental 

and other course-related factors and repeated measurements for athletes, I present in Chapter 4 

a model of progression of mean performance times of top triathletes over the years. I have used 

this model to investigate developmental phase of the sport of triathlon and to enquire about the 

contribution of the three race stages, swim, bike and run, to overall performance. The focus of 

Chapter 5 is evaluation of a team performance over a period of five years by modelling 

performance scores of a football academy team. This study was performed in collaboration with 

Aspire Academy for Sport Excellence (Doha, Qatar) for answering the question of success (or 

not) of the youth development programme over those five years. In Chapter 6, progression of 

performance of a country’s swimming squad is investigated by combining athletes’ world 

rankings. There was a need for more comprehensive approaches to assess country’s 

performance than tracking the number of medals, because many countries compete 

internationally without winning medals regularly. Swimming was chosen for designing such 

approach because of the availability of world rankings for multiple strokes and distances. In 

Chapter 7, I have derived performance metrics to assess country’s Olympic sports by 

investigating progression of athletes’ placings at the annual main competition over an Olympic 

cycle. The idea for this final study was raised by the Knowledge Edge for Rio programme 

(HPSNZ), because up until now success was measured only by number of medals, and there 

was a need to identify development athletes who progressed extremely well during their Olympic 

campaign but did not win a medal. Finally, in Chapter 8, overall conclusions are drawn and several 

perspectives for future research are described. 
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Figure 1. Thesis structure with brief description, levels of competitive performance, variables of 

performance and models to be used in each of the original-research studies (Chapter 3-7). 

Modelling Progression of Competitive Sport Performance

•Theoretical rationale: Importance of tracking performance changes in competitive 
performance, generating objective data for evaluating athletes, teams and 
countries.

•Methodological approach: Linear (mixed and generalised) models to explain 
sport performance

Chapter 1- Introduction

•Level of performance: Athlete
•Variables: Performance at competitions, time, distance and scores
•Model: Mixed linear model with repeated measurement for athlete

Chapter 2- Variability of competitive elite performance

•Level of performance: Athlete
•Variable: Athlete's performance time explained by age
•Model: Mixed linear model with repeated measurement for athletes and cluster for each 
race and competition leve

Chapter 3- Tracking career perfromance of successful triathletes

•Level of performance: Sport
•Variables: Top-mean performance time explained by year
•Model: Mixed linear model with repeated measurement for athletes and cluster for each 
race 

Chapter 4- Performance progression in elite OD traithlon

•Level of performance: Team
•Variables: Performance scores explained by year
•Model: Generalized linear mixed model with repeated measurements for 
individual teams and cluster of scores for Aspire and Other

Chapter 5- Modelling progression of an academy's soccer teams

•Level of performance: Country squad
•Variables: Rankings explained by year
•Model: Generalized linear model to derive weight scale for ranking of individual 
athletes

Chapter 6- Using athletes’ world rankings to assess performance of countries

•Level of performance: Country's Olympic sports
•Variables: Competition placings explained by year
•Model: Linear model to determine rate of progression

Chapter 7- Evaluating sport performance over Olympic cycles

•Statisticl contributions: Statistical models for assessing and tracking changes in 
competitive performance

•Practical applications: Applications for deliverying the results of the developed analysis 
to coaches and high-performance managers 

Chapter 8- Discussion and Conclusion
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1.6. Research Publications and Conference Presentations  

The research studies (Chapter 2-7) from this doctoral thesis have resulted in conferences 

presentations and in either publications or articles submitted for publication. Chapter 7 has not 

been submitted to any journal or conference because it is currently under embargo, as HPSNZ 

believes findings may provide competitive advantage for New Zealand sport. 

 
Table 2. List of conference and publications originated by Chapter 2-6 of this PhD thesis 

Chapter Publication or Conference 
Chapter 2 Malcata, R. M., & Hopkins, W. G. (2014, in press). Variability of competitive elite 

performance. Sports Medicine. 
Chapter 3 Malcata, R. M., Hopkins, W. G., & Pearson, S. (2014). Tracking career 

performance of successful triathletes. Medicine and Science in Sports and 
Exercise, 46 (6), 1227-34. 
Malcata, R. M., Pearson, S., & Hopkins, W. G. (2013). Tracking career 
performance of successful triathletes. Presented at the meeting of the European 
College of Sport Science, Barcelona, Spain. 

Chapter 4 Malcata, R. M., Hopkins, W. G., & Pearson, S. (submitted). Performance 
progression in elite Olympic-distance triathlon. Scandinavian Journal of 
Medicine and Science in Sports. 

Chapter 5 Malcata, R. M., Hopkins, W. G., & Richardson, S. (2012). Modelling the 
progression of competitive performance of an academy's soccer teams. Journal 
of Sports Science and Medicine, 11, 533-536. 
Malcata, R. M., Hopkins, W. G., & Richardson, S. (2011). Modelling the 
progression of competitive performance of an academy's soccer teams. 
Presented at the meeting of the European College of Sport Science, Liverpool, 
United Kingdom. 

Chapter 6 Malcata, R. M., Vandenbogaerde, T. V., & Hopkins, W. G. (2014. Using athletes' 
world rankings for assessing country performance. International Journal of 
Sport Physiology and Performance, 9, 133-138. 
Malcata, R. M., Vandenbogaerde, T. V., & Hopkins, W. G. (2012). Using 
athletes' world rankings for assessing country performance. Presented at the 
meeting of the European College of Sport Science, Bruges, Belgium. 
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CHAPTER 2 

VARIABILITY OF COMPETITIVE ELITE PERFORMANCE 
 

This chapter comprises the following paper submitted to Sports Medicine: 

Malcata, R. M., & Hopkins, W. G. (submitted). Variability of competitive elite performance. Sports 

Medicine. 

Overview 

Thresholds for important changes in competitive performance of elite athletes are needed 

to assess potential performance-enhancing strategies and other factors that could affect an 

athlete's chances of winning. These thresholds are obtained from estimates of within-athlete 

variability, the random variation shown by athletes from competition to competition. Purpose: To 

systematically review estimates of within-athlete variability of competitive performance in various 

sports. Methods: We searched SPORTDiscus and Google Scholar for studies providing 

estimates of within-athlete variability between competitions as coefficients of variation. Estimates 

are reported here only for the best athletes. Some studies also combined within-athlete variability 

with between-athlete differences into a measure of predictability expressed as an intraclass 

correlation coefficient, reported here for the full field of competition. Results: Estimates of within-

athlete variability ranged from 0.15% for speed-skating times to 39% for surfing scores. For sprint 

and endurance sports, such as running and cycling, estimates ranged from 0.6% to 1.4%, while 

for sports requiring explosive power in a single effort, such as field events and weightlifting, 

estimates ranged from 1.4% to 3.3%. Greater contributions of skill, chance or environment 

presumably accounted for relatively higher within-athlete variability in canoe slalom, mountain 

biking and surfing. Speed skating and skeleton had the lowest variability, because performance 

times are determined mainly by performance in the initial phase of the race. Predictability 

correlations ranged from 0.18 (surfing) to 0.93 (cross-country skiing). There was little difference 

in variability or predictability between men and women. Conclusion: The wide range in within-

athlete variability of performance between sports must be due to different factors affecting 

performance, including physiology, skill, competition dynamics, environment, measure 

performance (time, distance, score), and chance.  
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2.1. Introduction 

Athletes show natural variability in their performance from one competition to the next. 

Understanding and quantifying this variability is important. In an article published in 1999, the 

variability in an athlete's performance from competition to competition was shown to provide an 

estimate of the smallest important change in performance, a crucial item of information for sport 

scientists monitoring individual athletes or designing and analysing studies of factors affecting 

athletic performance (W.G. Hopkins, Hawley, & Burke, 1999). Since then, investigation of 

variability of competitive performance has become a focus of research interest, not only to provide 

estimates of the smallest important effect in various sports but also to gain understanding of the 

factors responsible for performance variability. 

In the 1999 article, the smallest important change in performance was defined as the change 

in performance that results in one extra medal in every ten competitions for athletes who are 

already winning medals frequently. For sports in which athletes compete as individuals for the 

best time, distance or performance score, simulations showed this change to be 0.3 of the typical 

random variation that an athlete shows from competition to competition (W.G. Hopkins, et al., 

1999). Thresholds for moderate, large, very large and extremely large changes in performance 

between competitions, representing three, five, seven and nine extra medals in every ten 

competitions respectively, were shown subsequently to be 0.9, 1.6, 2.5 and 4.0 of this variability 

(W.G. Hopkins, Marshall, Batterham, & Hanin, 2009). Estimates of the within-athlete variability 

between competitions are therefore crucial for identifying important performance changes in 

practical and research settings. 

When an athlete’s performance changes between competitions, part of the change is 

experienced by all the athletes in the competition; for example, all triathletes will have an increase 

in performance time if the race course is longer than usual. Such changes in performance should 

be excluded from the analysis to derive estimates of the within-athlete variability, because factors 

that affect performance of all athletes do not alter their chances of winning. In almost every 

published study, the appropriate analysis has been performed with mixed linear modelling, with 

fixed and random effects to explain performance. Fixed effects are used to adjust for factors 

affecting mean performance (such as competition identity, race distance, environmental 

conditions and so on); random effects include athlete identity to estimate differences between 

athletes, athlete identity interacted with year to estimate within-athlete between years variability, 

athlete identity interacted with run to estimate within-athletes between trails variability (for 

competitions in which total performance is result of the sum of the performances in the different 

trials, such as in skeleton (Bullock, Hopkins, Martin, & Marino, 2009)); and residual to estimate 

the typical variation shown by athletes from competition to competition. This typical random 

variation provides a measure of consistency of athletes’ performances after accounting for effects 

of factors affecting mean performance. The typical random variation is also known as within-

athlete variability and has been expressed in all studies as a coefficient of variation, a standard 

deviation expressed as percentage of a mean. Coefficients of variations are derived when log-

transformed performances are analysed with linear models, because errors in a linear model are 
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derived as an additive effects which become percent effects after back-transformation. The 

coefficient of variation in competitive performance is equivalent to the typical percent error for a 

performance test in a reliability study (W.G. Hopkins, 2000). 

The within-athlete variability can be combined with differences between athletes (spread of 

performances between athletes) to derive a measure of predictability of performance in a sport: 

the smaller the within-athlete variability relative to the between-athlete differences, the more 

predictable the sport. One such measure is the intraclass correlation coefficient (ICC), defined as 

the proportion of the differences between athletes that are not due to the within-athlete variability, 

or the “pure” athlete differences expressed as proportion of the observed athlete differences. This 

definition of ICC for competitive performance is equivalent to a test-retest correlation with 

competitions treated as tests in a reliability study (W.G. Hopkins, 2000). 

There has been more than a decade of research aimed at estimating within-athlete variability 

for competitive performance in different sports. Estimates of the within-athlete variability provide 

the thresholds for assessing performance changes, but the comparison of such estimates 

between sports also provides insights into factors affecting performance in competition. Measures 

of predictability have also been reported in some of these studies recently. The present study is 

the first systematic review of this research. 

2.2. Methods  

Data Search and Study Selection 

We searched the literature for estimates of the random variability in competitive 

performance of elite athletes from competition to competition for different sports. The search was 

limited to elite and senior performances, considering only athletes whose performances are at an 

international level and excluding performances of juniors and master athletes (e.g. triathlon 

performances included only athletes competing internationally in the professional circuit). For 

articles where athletes were ranked as upper-ranked and lower-ranked athletes, we chose to 

present only the estimates for the upper-ranked athletes. SPORTDiscus and Google Scholar 

were used as the databases, and search was limited to articles published up to October 2013. 

Initial searches for terms anywhere in the article produced an impractically large number of 

citations (13291 in SPORTDiscus or 38900 in Google Scholar), with too many citations not 

relevant for this literature search. In SPORTDiscus we restricted the search to the title, abstract 

and key words using the search terms variability and (sport or athlete* or elite* competiti*) and 

(performance or time). In Google Scholar two searches were performed, the first using the key 

term smallest worthwhile change, and the second using the option of searching related articles 

for one of the relevant citations (this option is limited to 101 citations).  Relevant studies were 

selected first on the base of title and abstract, and then, after an investigation of the complete 

article. To be included the published article had to be written in English and report an estimate of 

within-athlete variability between competitions for a measure of competitive performance (time, 

distance, scores). We excluded three articles in which estimates of within-athlete variability 

between competitions were not presented. We excluded two studies in which estimates of 
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variability were derived for performances of non-elite athletes (juniors, masters and club-level 

athletes). One study was excluded because estimates of variability were for a surrogate of a 

performance (power output) as opposed to a measure of competitive performance. Seven studies 

were also excluded, because estimates of within-athlete variability or smallest worthwhile change 

were reported from previous published studies.  Figure 1 summarises the search and selection 

process. No studies were excluded for reasons of poor quality. One study was initially excluded 

because of unrealistic large estimates of within-athlete variability for surfing performance scores 

(Mendez-Villanueva, Mujika, & Bishop, 2010); we subsequently contacted the authors, who 

provided the original data for further analysis. 

 

Figure 2. Schematic representation of study search and selection. 

Data Extraction 

Estimates of within-athlete variability between competitions within and between seasons 

for upper-ranked athletes are presented as coefficients of variation, with uncertainty expressed 

as 90% confidence intervals. Season is defined as a period of time with consecutive competitions. 

Duration of the season was reported in only four articles (W.G. Hopkins, 2005; McGuigan & Kane, 

2004; Paton & Hopkins, 2005; Trewin, Hopkins, & Pyne, 2004), so this measure is not included 

in the table of results. In four studies (Bullock, et al., 2009; W.G. Hopkins, 2005; Muehlbauer, 

Schindler, & Panzer, 2010; Paton & Hopkins, 2005) confidence intervals were not reported, 

authors of three of these studies have provided the missing data. For the research of surfing 

performance scores, we estimated within-athlete variability and intraclass correlation coefficient 

using a straightforward reliability model in which competition identity was specified as fixed effect 

(adjusting for the each competition mean performance) and athlete identity as random effect (e.g. 

(Paton & Hopkins, 2005)). For estimates of CV of three studies (McGuigan & Kane, 2004; Paton 

& Hopkins, 2006; Pyne, Trewin, & Hopkins, 2004), 95% confidence limits were converted to 90%, 

using a published spreadsheet (W.G. Hopkins, 2006).  

Initial search: 
SPORTDiscus, 533 studies 
Google Scholar, 417 studies 

922 studies excluded 
based on title and abstract 

29 studies 

16 studies included in the review 

Studies excluded: 
3 with no within-athlete between 

competition variability 
2 with sub-elite athletes 
1 with no competitive performance 

measure 
7 with estimates from citations 
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We estimated mean coefficients of variation for each sport or event type (e.g., track events 

and field events for athletics). Mean estimates were calculated first for the two genders separately 

(when data were available); but with the exception of weightlifting, differences between genders 

were trivial, so men’s and women’s estimates were combined into a mean for the sport. Mean 

coefficients of variation were estimated as the square root of the mean of the squares of 

coefficients of variation weighted by the degrees of freedom. If degrees of freedom were not 

reported (in the majority of the articles), they were estimated from the confidence limits of the CV. 

The degrees of freedom were estimated based on the sampling distribution of a variance being 

twice the square of the standard error divided by the degrees of freedom. Rearranging this 

relationship and assuming normality of sampling distribution, separate estimates for degrees of 

freedom were obtained for the upper and lower confidence limits. It was found empirically that 

adding one to the geometric mean of these two estimates gave an accurate estimate of the 

degrees of freedom for the coefficient of variation of each event. The 90% confidence limits of the 

mean coefficient of variation were obtained using a published spreadsheet (W.G. Hopkins, 

2007a). 

Estimates of within-athlete variability between competitions between seasons were reported 

only in four studies. In two of these studies (Bullock, et al., 2009; Smith & Hopkins, 2011), only 

the pure between-season variability was reported, which is the variability additional to the within-

season variability. The observed between-season variability was derived as the square root of 

the sum of the squares of the within-season variability and the pure between-season variability. 

Only the means for each sport are shown for the between-season variability.  

Predictability of performance from competition to competition is presented as intraclass 

correlation coefficient (ICC) with uncertainty as 90% confidence limits. Owing to paucity of 

estimates of ICC for the different events and sports, we have chosen to present only mean ICC 

for each sport, calculated using a published spreadsheet (W.G. Hopkins, 2006). ICCs are shown 

for all athletes in competitions (opposed to the within-athlete variability, which are presented for 

the upper-ranked athletes only). 

A magnitude-based inferences approach was used to assess differences for CVs and ICC 

(Smith & Hopkins, 2011).  Briefly, the usual thresholds for evaluating a difference in mean 

performance (0.3, 0.9, 1.6, 2.5 and 4.0 of the within-athlete competition-to-competition CV for 

small, moderate, large, very large and extremely large, respectively) are halved when comparing 

differences in CVs, because doubling the CV (or halving the threshold) is consistent with 

evaluating 2 SD of a virtual covariate that fully explains the CV (W.G. Hopkins, et al., 2009). For 

example, if one CV is 3%, the threshold for a small difference is 0.45% (0.3/2×3%), and the CV 

that represents such a difference is 3.45% (3%+0.45%) or a ratio of 1.15 (3.45%/3.0%). 

Expressed as ratios, the thresholds are independent of the absolute values of CV and are 1.15, 

1.45, 1.8, 2.25 and 3, for small, moderate, large, very large and extremely large differences. 

Thresholds for evaluating differences in ICCs were based on the assumption that a 2-SD 

difference in performance between athletes in one competition should predict a small, moderate, 

large,… difference between those athletes in another competition, if the correlation is small, 

moderate, large,… (W.G. Hopkins, et al., 2009). The thresholds were then derived via the well-
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known equation, ΔY/SDY=r.ΔX/SDX, where Y is performance in the second competition, X is 

performance in the first competition, r is the correlation (here the ICC), ΔY and ΔX are the changes 

in performance in the competitions, and SDY and SDX are the standard deviations in the 

competitions.  The ΔX is 2SDX and the ΔY is f.SDW, where SDW is the within-athlete variability 

and f is 0.3, 0.9, 1.6,… for a small, moderate, large,… correlations. Making use of two further 

relationships, SDY=√(SDB2+SDW2) and ICC=SDB2/(SDB2+SDW2), where SDB is the true SD 

between athletes, the equation can be rearranged into a quadratic equation of ICC in terms of f, 

(4/f2)ICC2+ICC-1=0, with the positive solution being given by f2(√(1+16/ f2)-1)/8. The final 

thresholds for magnitudes of ICCs and differences between ICCs were 0.14, 0.36, 0.54, 0.69 and 

0.83 for low, moderate, high, very high and nearly perfect correlations.  

 

2.3. Results 

Table 3 shows the retrieved estimates of the random variability shown by upper-ranked 

athletes during a competitive season. The lowest within-athlete variability was 0.15% for speed-

skating, while the majority of estimates ranged from 0.6% (swimming and men’s lightweight four) 

to 3.4% (women’s javelin). Surfing scores with a variability of 39% were a clear outlier. 

In Table 4, mean estimates for within-athlete variability and intraclass correlation 

coefficients for competitions within season and between seasons are presented for each sport, 

summarizing their typical uncertainties. Mean estimates for the sport were derived although CVs 

of the different events within a sport could be different (e.g., men’s long jump and men’s pole 

vault).. Estimates of variability within-season ranged from 0.6% to 1.4% for sprint and endurance 

sports, such as running and cycling, while for sports requiring explosive power in a single effort, 

such as field events and weightlifting, estimates ranged from 1.4% to 3.3%. Relatively higher 

variability was observed for the sports of canoe slalom, mountain biking and surfing. Surfing was 

the only sport with subjective scoring for which published estimates of within-athlete variability 

were available. To investigate whether other sports with subjective scoring have high CVs, we 

have analysed data from international performances for half-pipe freestyle skiing and 

snowboarding between 2010 and 2014. The within-season CVs were 34% (90% confidence 

interval 30-39%) and 53% (49-58%), and the ICC were 0.45 (0.32-0.57) and 0.17 (0.08-0.26), 

respectively.  

Between-season variability was higher by a factor of ~1.1-1.2 (10%-20%) than variability in 

competitions within-season. Sports showed a wide range of predictability, and, with the exception 

of weightlifting, differences between mean estimates of variability and predictability for men and 

women were trivial. 
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Table 3. Estimates of within-athlete variability from competition to competition within a season separately by event and sport (mean and 90% 
confidence interval). Information regarding number of races included in the analysis, type of competition and type of competitors is also shown. 
Season has different duration dependent on event and sport. 

Study Sport 
Number 
races Competition 

Type of 
competitors 

  Perf. 
Measure 

Variability 
within season (%) 

Gender Event Mean 90% CI 
Hopkins (2005) Track-and-

field athletics 
≤17 1997 

Grand Prix 
Series 

Top half in each 
competition 

Men Running <3kmb Time 0.8 0.7-0.9 
 Running 3-10kmc  1.1 1.0-1.3 
 Triple jump Distance 3.1 1.8-13.6 
 Long jump  2.3 1.8-3.1 
 Pole vault  1.9 1.5-2.6 
 Discus  1.0 0.7-1.8 
 Javelin  1.7 3.2-9.0 
Women Running <3kmb Time 1.0 0.9-1.0 
 Running 3-10kmc  1.1 1.0-1.2 
 High jump Distance 1.6 1.1-2.7 
 Triple jump  1.8 1.3-2.9 
 Javelin  3.4 2.6-5.2 
 ShotPut  2.6 1.7-5.4 

Nibali (2011) Canoe- 
Slalom, 
Non-
penalised 

? 2000-2007  
World Cup, 
World Champs 
and Olympics 

Top half of 
finalists 

Men C1d Time 1.2 1.1-1.3 
  C2d (double canoe)  1.7 1.5-1.9 
  K1d  1.0 0.9-1.1 
 Women K1d  1.5 1.4-1.7 

 Canoe- 
Slalom, 
Penalised 

? 2000-2007  
World Cup, 
World Champs 
and Olympics 

Top half of 
finalists 

Men C1d  1.6 1.5-1.8 
  C2d (double canoe)  2.1 1.9-2.3 
  K1d  1.2 1.1-1.3 
 Women K1d  1.9 1.7-2.1 

Bonneti (2010)  Canoe- 
Sprint 

? 2003/07  
World Cup, 
World Champs 
and Olympics 

“A” finalists Men C1-200d Time 0.9 0.7-1.2 
   C1-500d  1.1 0.9-1.3 
   C1-1000d  0.7 0.4-1.1 
   K1-200d  1.1 0.9-1.3 
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Bonneti (2010) 
 

Canoe- 
Sprint 

 2003/07  
World Cup, 
World Champs 
and Olympics 

“A” finalists  K1-500d Time 1.0 0.8-1.2 
   K1-1000d  0.8 0.6-1.1 
  Women K1-200d  1.2 0.9-1.6 
   K1-500d  0.7 0.6-0.8 
   K1-1000d  1.3 1.0-1.7 

Flyger (2009) Cycling 
Track 

25 2005-2006 
World Cups 
World Champs 
Commonwealth 

? Women 200-m Flying sprint Time 1.3 1.1-1.6 
15  Individual pursuit  1.2 1.0-1.6 
12  500-m time trial  0.7 0.6-1.0 
33 Men 200-m Flying sprint  1.3 1.1-1.5 
13  Individual pursuit  1.0 0.8-1.3 
14  Team pursuit  1.0 0.8-1.3 
12  1-km Time trial  0.7 0.6-1.0 

Paton (2006)  6 US national Top half in each 
competition 

 1-km Time trial  1.2 0.8-1.8 

Paton (2006) Cycling 
Road 

10 2000 World 
Cups 

Top 8 in the each 
competition 

Men Road race Time 0.4 0.3-0.5 

18 Tour de France Top 8 in each 
competition 

   0.7 0.7-0.7 

3 World Champs 
and Olympics 

Top half in each 
competition  Time trials  1.3 0.9-2.0 

2 Tour de France Top 8 in each 
competition 

   1.7 1.2-2.4 

Paton (2006) Cycling 
Mountain Bike 

7 World Cups Top quarter in 
each competition 

Men   2.4 2.1-2.7 
8  Women   2.5 2.2-2.9 

Spencer (2014) Cross- Country 
Skiinge 

28 2002-2011  
World Cup,  
World Champs 
and Olympics 

Top 10 over the 
entire season 

Men 15-km Classical Time 1.2 1.1-1.3 
  15-km Free  1.1 1.0-1.2 
   Sprint Classical  1.2 1.1-1.3 
   Sprint Free  1.2 1.0-1.2 
  Women 10-km Classical  1.4 1.3-1.5 
   10-km Free  1.2 1.1-1.3 
   Sprint Classical  1.3 1.2-1.4 
   Sprint Free  1.3 1.2-1.4 
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Smith (2011) Rowing 46 1999- 2009 “A” Finalists Men Single scull Time 1.2 1.0-1.4 
     Lightweight double 

sculls 
 0.7 0.6-0.8 

      Double sculls  1 0.9-1.2 
      Pair  0.9 0.8-1.0 

     Lightweight four  0.6 0.5-0.7 
      Four  0.7 0.6-0.8 
      Quadruple sculls  1.1 1.0-1.3 
      Eight  0.8 0.7-0.9 
     Women Single  1 0.9-1.2 
      Lightweight double 

sculls 
 1 0.9-1.2 

      Double sculls  0.9 0.8-1.0 
      Pair  0.9 0.8-1.0 
      Quadruple sculls  0.9 0.8-1.0 
      Eight  0.8 0.7-0.9 
Bullock 
(2009) 

Skeleton 22 2000-2006 
World Cup 

Top 10 in each 
competition 

Men  Time 0.4 0.3-0.5 
 25 Women   0.4 0.4-0.5 

Muehlbauer 
(2010) 

Speed Skating 5 2007-2008  
World Cup 

Upper ranked 
athletes over the 
entire season 

Men 1000-m Sprint Time 0.15  
Women  0.33  

Mendez 
(2010) 

Surfing 12 2002 World 
Champs Tour 

Upper ranked 
athletes over the 
entire season 

 
 

Scores 39 35-43 

Trewin (2004) Swimming ~13 2000 Olympics Top 50 world-
rank athletes 

Men 
Average for all events 

Time 0.8 0.7-0.8 
   Women  0.8 0.8-0.9 

Pyne (2004) Swimming ~52f 1999/2000 
Olympic Pan 
Pacific Champs,  

26 US and 25 
AUS Olympic 
Swimmers 

Both Freestyle Time 0.6 0.4-0.9 
   Breaststroke  0.8 0.5-1.3 
   Butterfly  1.0 0.7-1.4 

     Backstroke  0.6 0.5-0.8 
   Individual medley  0.7 0.4-1.1 
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Pyne (2004) Swimming ~52f 1999/2000 
Olympic Pan 
Pacific Champs 

26 US and 25 
AUS Olympic 
Swimmers 

Both 50 + 100 m Time 0.7 0.6-0.8 
   200 + 400 m  0.7 0.6-0.8 
   800 + 1500 m  1.0 0.7-1.3 

Fulton (2009) Paralympic 
Swimming 
100-m freestyle 
 

15 2004-2006  
National Trials, 
Paralympics and 
World Champs  

Finalists (top 8 in 
each competition) 

Men S2-S4g Time 3.7 2.9-5.3 
  S5-S7g  1.2 0.9-1.9 
  S8-S10g  1.3 1.1-1.7 
  S11-S13g  2.4 1.7-4.2 

     Women S2-S4g  2.9 2.0-5.0 
  S5-S7g  2.6 2.1-3.4 
  S8-S10g  1.7 1.4-2.1 
   S11-S13g  1.5 1.2-2.1 

Paton (2005) Triathlon 9 1997/1998 
International 
Triathlon Races 

Top 10% athletes 
over an entire 
season 

Men Total Time 1.1 0.9-1.4 
 Swim   1.2 1.0-1.6 
 Cycling   1.3 1.1-1.6 
 Run   2.5 2.1-3.1 

McGuigan 
(2004) 

Weightlifting ? 1998/2000 
National and  
International 
Competitions 

Top 5 ranked 
athletes at  
2000 Olympics 

Men Total Weights  1.7 1.4-2.1 
 Snatch (Scores) 1.9 1.6-2.3 
 Clean and jerk  2.0 1.7-2.4 
Women Total  3.3 2.7-4.1 
 Snatch  3.6 2.9-4.5 
 Clean and Jerk  3.7 3.0-4.6 

aCI Confidence Interval. 
b100-m to 1500-m runs; 100- to 400-m hurdles. 
c1500- to 10000-m runs; male 3000msteeplechase. 
dC for canoe events and K for Kayak events; 200, 500 and 1000 represent the event distance in metres. 
eonly interval start races. 
f13events*4 competitions. 
gS2-S0 most through least physically impaired and S11-S13 most through least visually impaired. 
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Table 4. Mean estimates and confidence intervals of within-athlete variability for competitions within and between seasons (expressed 
as coefficient of variation and 90% confidence intervals), and mean intraclass correlation coefficients (ICC)  and 90% confidence 
intervals for competition within and between seasons for the sports identified in Table 3. 

Sport Class of event 

Variability (%) Intraclass correlation coefficient 
within season between season within season between season 
Mean 90% CI Mean 90% CI Mean ±90% CI Mean ±90% CI 

Athletics Track 1.1 1.0-1.1       
Field  1.4 1.3-1.6       

Canoe slalom, non-penalised  1.4 1.3-1.4       

Canoe slalom, penalised  1.7 1.7-1.8   0.31 0.16 0.27 0.16 
Canoe sprint  1.0 0.9-1.1       
Cycling track Sprint/Pursuit 1.2 1.1-1.3       

Time trial 0.8 0.7-0.9       
Cycling roadb Road race 0.6 0.5-0.6       

Time trials 1.5 1.2-2.1       
Cycling mountain bike  2.4 2.2-2.7       
Cross-country skiing  1.2 1.2-1.3 1.3 1.2-1.3 0.93 0.00 0.90 0.00 
Rowing  0.9 0.9-0.9 1.0 0.9-1.1 0.65 0.04 0.56 0.04 
Skeleton  0.4 0.4-0.5 0.5 0.5-0.6 0.36 0.19 0.15 0.21 

Speed skating 1000-m sprint 0.2    0.74    

Surfingb  39 45-43   0.18 0.07   
Swimming  0.8 0.7-0.9       
Paralympic swimming 100-m freestyle  2.0 1.9-2.2 ~2.7  0.88    

Triathlonb  1.1 0.9-1.4       
Weightlifting Men 1.7 1.4-2.1       
 Women 3.3 2.7-4.1       
aICC is Intraclass correlation coefficient and CI is confidence interval. 
bonly men’s data was used 
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2.4. Discussion 

In this systematic review we have investigated data from 16 original studies, reporting 

estimates of within-athlete variability and predictability of competitive performance for different 

events and sports. Expressing variability as a coefficient of variation (CV) enables comparison of 

variability of events within sports and comparison of mean variability between sports, which would 

not be possible using performance scores in their original units.  

Variability in performance must arise from variability in the factors that affect performance, 

including power output, environment, race dynamics, skill, and subjective scoring. Sports that 

differ in their CVs must differ in the relative contributions of these factors.  

For most of the sports in the tables, performance is determined mainly by the athlete's ability 

to output power to achieve a shortest performance time. For elite athletes, one would expect 

similar physiological variability in power output from competition to competition, regardless of the 

sport. However, CVs for power output do not translate directly into CVs for performance time in 

many sports. The contribution of physiological variability in power output to variability in 

performance time is determined by the relationship between power (P) and velocity (V) for the 

sport. This relationship can be expressed as P=kVx, where k and x are constants for the sport 

(Will G Hopkins, Schabort, & Hawley, 2001). For example, x has values of 3 for rowing and canoe-

sprint, ~2.3 and ~2.0 for cycling and swimming, and 1.0 for running (Will G Hopkins, et al., 2001). 

Cross-country skiing, mountain biking, and any other sport similar to running, where most of the 

work is done against gravity, will probably all have values of ~1.0. For the small changes in 

velocity represented by the CVs in performance times, application of calculus to the power-

velocity relationship shows that the CV for power is equal to the CV for velocity or time multiplied 

by the constant x. A 1% change in power output would therefore lead to a 1% change in 

performance time for running and similar sports but a ~0.3% to 0.5% (1/3 to 1/2) change in 

performance times for rowing, canoe-sprint, cycling and swimming. However, CVs of performance 

times for these sports were similar to those for running, implying that factors other than 

physiological production of power must contribute to their variability. The most likely factors are 

environmental, whereby changes in the environment differ between athletes from one race to the 

next. For example, in an endurance cycling time trial, application of calculus to the power-velocity 

relationship shows that a net increase in wind speed of only 1 km.h-1 would increase a cyclist's 

performance time by ~1.5%.  

Race dynamics may explain the remarkably low values of CV for speed skating and skeleton 

times compared with those of other sprint sports. Performance in the initial sprint phase largely 

determines the differences in total performance time (Zanoletti, La Torre, Merati, Rampinini, & 

Impellizzeri, 2006). The percent variability in the initial phase, which is presumably similar to that 

in other sprint events, will manifest as a lower percent variability when expressed as a percent of 

the total performance time (Bullock, et al., 2009). 

The higher values of CV for sports requiring explosive power in a single effort (athletics field 

events and weightlifting) may reflect the importance of skill in these performances. In a review of 
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movement variability of javelin and discus throws, Bartlett and colleagues (Bartlett, Wheat, & 

Robins, 2007) reported that even elite athletes show variability in their patterns of movement, 

which could lead to variability in performance. Skill in addition to environment could also be 

responsible for the even larger CV of canoe-slalom and mountain biking. Skill and environment 

are also likely factors affecting variability in performance in the sports with the largest CV (surfing, 

half-pipe freestyle skiing and snowboarding), but subjectivity in scoring appears to be the greatest 

contributor here. 

Estimates of within-athlete variability for competitions between seasons represent the 

random variation shown by athletes from one season to the next and are therefore important for 

assessing magnitude of long-term performance changes in competitive performance. As 

expected athletes showed a larger variability in performance for competitions between seasons 

than for competitions within season, reflecting greater differences in performances over a longer 

time interval. Skeleton had the lowest CV and Paralympic swimming had the highest CV, 

presumably reflecting greater skill demands in some Paralympic classes.  

In some studies estimates of predictability of the sport were also reported as intraclass 

correlation coefficients (ICC), with values ranging from low to nearly perfect predictability 

according to the scale of magnitudes defined in (Smith & Hopkins, 2011). Surfing and other sports 

with low predictability require a large number of competition scores to establish a precise ranking 

of athletes’ abilities. For highly predictable sports, such as cross-country skiing, placings in any 

single competition are a good representation of a ranking of athletes’ abilities. 

Within-athlete variability and predictability were combined for men’s and women’s events, 

with exception of weightlifting, the only sport/event with a large difference between CVs. For the 

particular case of weightlifting, the greater within-athlete variability of female athletes is likely due 

to the lower level of competitiveness of women’s field, as this event was added later to the Olympic 

program (McGuigan & Kane, 2004).  

Upper-ranked athletes often have less variability compared to that of the other athletes 

(Bonetti & Hopkins, 2010; Bullock, et al., 2009; W.G. Hopkins, 2005; McGuigan & Kane, 2004; 

Nibali, et al., 2011; Paton & Hopkins, 2005, 2006; Smith & Hopkins, 2011; Spencer, et al., 2014), 

who may be inconsistent in their training and in their effort in competitions if a medal is unlikely 

(McGuigan & Kane, 2004). We have reported estimates of within-athlete variability for upper-

ranked athletes only, because we are interested in estimates of variability that provide the 

smallest important change for winning medals. However, the definition of upper-ranked athlete 

varied across studies. In five studies (Bonetti & Hopkins, 2010; Bullock, et al., 2009; Fulton, et al., 

2009; Nibali, et al., 2011; Paton & Hopkins, 2006) those athletes were identified from top placings 

in each competition (e.g., the top 10 in skeleton competitions (Bullock, et al., 2009)); 

consequently, poorer performances of these athletes in other competitions were not included in 

the estimation of variability. This approach of selection of best performances underestimates the 

variability for deriving the smallest important change in performance. In other studies, upper-

ranked athletes were selected either by using a seasonal ranking provided by the sport (e.g. FINA 

world-ranking for swimming (Trewin, et al., 2004)), or by producing a ranking based on athletes’ 

average performances over the season (W.G. Hopkins, 2005; Paton & Hopkins, 2005; Spencer, 
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et al., 2014). These averages were estimated using a simple mixed model in which performance 

was explained by competition identity as a fixed effect and athlete identity as a random effect. 

The random-effect solution for athlete identity provided athletes’ averages properly adjusted for 

any competitions that the athletes did not enter. The analysis of such seasonally identified upper-

ranked athletes provides accurate estimates of the variability for defining smallest important 

change in performance. Comparison of estimates of variability derived using the two approaches 

is needed; for example, variability of top 10 performances in each cross-country skiing competition 

and of the 10 upper-ranked skiers over the entire season differed by a factor of ~1.2 to 1.7 (WG 

Hopkins, unpublished observations). There is also a need for better ways to estimate variability 

of upper-ranked athletes than with an arbitrary subset (e.g., the top 10); for example, use of a 

random effect to specify a gradual increase in within-athlete variability for athletes who are less 

well ranked. 

The usual mixed modelling approach for deriving estimates of variability as in previous 

studies (Bonetti & Hopkins, 2010; Bullock, et al., 2009; Fulton, et al., 2009; W.G. Hopkins, 2005; 

Nibali, et al., 2011; Paton & Hopkins, 2005, 2006; Pyne, et al., 2004; Smith & Hopkins, 2011; 

Spencer, et al., 2014; Trewin, et al., 2004) overestimates variability between consecutive 

competitions, because variability is calculated for all competitions within a season regardless of 

how far apart in time the competitions were. Typical variability from one competition to the next 

could be estimated either by analysing separately each consecutive pair of competitions and then 

averaging the variances, or by specifying a spatial distribution for the variance in the mixed model, 

assuming that performances at competitions further apart are less related in some systematic 

manner. Future research on variability of competitive performance should utilise one or other of 

these approaches to properly estimate variability between consecutive competitions. 

Estimation of thresholds for smallest and other important changes in performance as fractions 

and multiples of within-athlete variability between competitions is an important practical 

application of the research reviewed here. The thresholds apply directly to any studies where 

performance is investigated in competitions, but almost all studies of factors affecting 

performance are conducted with laboratory or field tests, under the assumption that effects on 

performance in such tests will translate into effects of similar magnitude in competitions. 

Conditions extrinsic and intrinsic to the athlete (such as environment, tactics, motivation, and 

anxiety) inevitably differ between a competition and a test, and such differences could modify the 

effects. For example, caffeine might have little or no effect in competitions compared with that in 

a laboratory test, if the only effect of the caffeine is to increase motor drive in the test towards the 

higher level experienced in competitions. Nevertheless, researchers can legitimately investigate 

effects in the laboratory or field, and in the absence of evidence to the contrary, they have to 

assume that these effects will translate into effects of equal magnitude in competitions. With this 

assumption, the thresholds for assessing changes in competitive performance can be can be 

used directly to assess performance of athletes in a laboratory or field test, provided the test 

reproduces the demands of the competition and the measure of performance in the test is in the 

same units as those of performance in the competition.  When the protocol or the units of 
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measurement in the test differ from those of the competition, transformation of the competition 

thresholds may be necessary.   

If performance in the test represents the athlete's ability to output power, the best approach 

to transformation is to convert the performance thresholds in the competition and the effects on 

performance in the test into percentages of mean power. This approach accommodates sports in 

which environmental, skill or other factors make performance in the competition more variable 

than in the test, because it addresses the question of the enhancement of power output needed 

to overcome the variability in the competition and thereby increase an athlete's chances of 

winning a medal. The conversion of the performance thresholds depends on the power-velocity 

relationship for the sport as described above (P= kVx). If the test is performed on an ergometer 

and the outcome can be expressed as a percent effect on mean power, no further transformation 

is needed, but otherwise the test protocol may have to be taken into account.  Percent effects on 

time for a fixed distance or distance for a fixed time will need to be converted to percent effects 

on power using the power-velocity relationship for the ergometer, which may differ from that for 

the competition. Effects on performance in incremental tests need careful treatment when they 

are converted to effects on power.  If the outcome is measured on an ergometer as peak power, 

it is reasonable to assume percent effects in the test apply directly to mean power in the 

competition (Will G Hopkins, et al., 2001). Percent effects for time in incremental tests that start 

at zero speed or power and increase linearly to maximum effort are equivalent to percent effects 

on power, but percent effects on time in incremental tests that start at a proportion (p) of a ramp 

or series of linear steps to peak power or speed have to be reduced by a factor of 1-p. Percent 

effects on time to exhaustion in a constant-load test are also problematic; these have to be 

converted to percent change in power output in a time trial of similar duration via the power-

duration relationship for sub-VO2maximal exercise, typically by dividing by ~15 (Will G Hopkins, 

et al., 2001) and by smaller factors derived from the critical-power or log-log relationship for 

supramaximal exercise (Hinckson & Hopkins, 2005).   

This review of literature revealed some areas requiring further research. The contributions of 

the factors affecting variability in competitive performance in various sports needs further 

investigation, because understanding these contributions may provide avenues for performance 

enhancement.  There is a need to replicate the studies of variability for athletics field events and 

Paralympic swimming with larger samples to achieve estimates with acceptable uncertainty. For 

purposes of properly assessing changes in performances of individual athletes between seasons, 

further research is needed to provide estimates of between-season variability and predictability 

of competitive performance. The majority of the published articles were for sports with objective 

measures of performance (time, distance or score), but there is a need for research on variability 

of performance in judgement-based sports, such as diving, gymnastics and combat sports. 

Finally, variability of competitive performance needs investigation in team sports. 
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2.5. Conclusion 

There was a wide range of within-athlete variability in performance for the different events 

and sports. We argued for various factors affecting the variability: physiological and skill demands 

of the sport, dynamics of competition, environmental and other external factors affecting 

performance, and the measure of competitive performance itself (time, distance, scores). In this 

review we focused on the within-athlete variability as a statistic to derive the smallest and other 

important magnitude thresholds for changes in competitive performance. These thresholds can 

be transformed into thresholds for research on factors affecting performance in laboratory and 

field tests. 
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CHAPTER 3 

TRACKING CAREER TRAJECTORIES OF SUCCESSFUL TRIATHLETES 
 

This chapter comprises the following paper accepted for publication at Medicine and 

Science in Sports and Exercise: 

Malcata, R. M., Hopkins, W. G., & Pearson, S. (2014, in press). Tracking career 

performance of successful triathletes. Medicine and Science in Sports and Exercise. 

 

Overview 

 
Purpose: Tracking athletes’ performances over time is important but problematic for sports with 

large environmental effects. Here we have developed career performance trajectories for elite 

triathletes, investigating changes in swim, cycle, run stages and total performance times while 

accounting for environmental and other external factors. Methods: Performance times of 337 

female and 427 male triathletes competing in 419 international races between 2000 and 2012 

were obtained from triathlon.org. Athletes were categorized according to any top-16 placing at 

World Championships or Olympics between 2008 and 2012. A mixed linear model accounting for 

race distance (Sprint, Olympic), level of competition, calendar-year trend, athlete’s category and 

clustering of times within athletes and races, was used to derive athletes’ individual quadratic 

performance trajectories. These trajectories provided estimates of age of peak performance and 

predictions for the 2012 London Olympic Games.  Results: By markedly reducing the scatter of 

individual race times, the model produced well-fitting trajectories suitable for comparison of 

triathletes. Trajectories for top-16 triathletes showed different patterns for race stages and 

differed more among women than among men, but ages of peak total performance were similar 

for men and women (28 ± 3 y, mean ± SD). Correlations between observed and predicted 

placings at Olympics were slightly higher than those provided by placings in races prior to the 

Olympics. Conclusion: Athletes’ trajectories will help identify talented athletes and their weakest 

and strongest stages. The wider range of trajectories among women should be taken into account 

when setting talent-identification criteria. Trajectories offer a small advantage over usual race 

placings for predicting men’s performance. Further refinements, such as accounting for individual 

responses to race conditions, may improve utility of performance trajectories.  

 

3.1. Introduction 

In the elite sport environment, monitoring of athletes’ competition performances provide 

valuable information for guiding training programmes, setting performance goals, and selecting 

talented athletes. For sports with consistent race environments, such as swimming, competition 
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results offer a relatively reliable measure of athlete’s ability. However, in many sports competition 

results are affected by external factors, and an athlete’s ability should be estimated using 

appropriate models to account for the extra variation on performances arising from such factors. 

Triathlon, consisting of swim, bike and run race stages, is a particular example of a sport where 

a variety of environmental factors (temperature, wind, race course profile) influence race 

conditions and consequently performance outcomes.  

Triathlon performance is affected by environmental conditions. Windy or wet conditions 

result in slower times across all three triathlon stages (swim, cycle and run), but other conditions 

can affect one stage in particular. For example, temperature determines whether or not it is a 

wetsuit swim, and the wetsuits typically results in better swim performances (Chatard, Senegas, 

Selles, Dreanot, & Geyssant, 1995; G. Millet & Vleck, 2011). Race courses are another source 

of variation of performance times. Swim courses vary in geometry (buoy distance and 

configuration), in water current, and in whether the water is fresh or salty; cycle and run courses 

vary in elevation and number of sharp curves, and even the distance of the cycle stage can vary 

up to 10% of the standard 40 km (ITU, 2013). These environmental effects should be taken into 

account when assessing triathletes’ performances. 

Studies in age-related performance changes in triathlon have been done mainly by Lepers 

and his colleagues. For Olympic distance triathlon, effects of age and gender were analysed 

using mean times of top triathletes (Bernard, et al., 2010; Etter, et al., 2013; Lepers, Sultana, 

Bernard, Hausswirth, & Brisswalter, 2009; Stevenson, et al., 2012; Young & Starkes, 2005). While 

this approach provided an important general understanding of age and gender differences in 

triathlon performance, a different approach is needed to monitor individual athletes over time. 

The analysis of long-term career changes in performance of individual athletes using 

competition results has been developed for track-and-field athletics (Berthelot, et al., 2012; 

Hollings, et al., 2012; Young & Starkes, 2005), swimming (Allen, et al., 2012; Berthelot, et al., 

2012; Pike, et al., 2010), skeleton (Bullock & Hopkins, 2009), and cross-country skiing (Alam, et 

al., 2008). Bullock et al. (Bullock & Hopkins, 2009) developed individual performance trajectories 

for a 4-year Olympic cycle, using a linear model to adjust for widely different race times arising 

from weather conditions and course profiles. Hollings et al. (Hollings, et al., 2012) estimated 

specific environmental and other venue-related effects directly, using a model that included age-

related performance changes over competitive career of track-and-field athletes. By building on 

these two studies, the purpose of our study was to develop an analytical tool for tracking the 

progression of performance of individual triathletes over their competitive career. Specifically, we 

have combined the approach of Bullock et al. (Bullock & Hopkins, 2009) to account for the large 

environmental factors in triathlon with that of Hollings et al. (Hollings, et al., 2012) to describe the 

age-related changes in performance. In addition, the analysis has provided benchmarks guides 

for talent selection policies, using profiles of successful triathletes, and allowed prediction of 

future race performances. 
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3.2. Methods 

Data 

Official times of international triathlon races from World Cup, European Championships, 

World Triathlon Series (named previously World Championship Series), World Championships 

(including Junior and Under-23) and Olympic Games were downloaded from triathlon.org. Race 

dates were obtained also from triathlon.org. We searched the Internet for each athlete’s date of 

birth, using as a primary source infostradasports.com. Athletes were excluded when date of birth 

was not found (150 male and 250 female athletes, mainly competing during the early 2000s and 

with a low number of performances) and performances were not included when athletes were 

disqualified or did not finish. Overall, 446 international competitions (224 men’s and 222 

women’s) were raced over the period from 2000 to 2012, with a total of 427 male and 337 female 

athletes competing in at least two of those competitions. Athletes were categorized as top 

athletes if they finished 16th or better at any World Championship or Olympic Games between 

2008 and 2012. This classification was used to create performance benchmarks. For purpose of 

developing career trajectories these athletes were further separated into Top 3 (10 male and 15 

female), having ever finished 1st-3rd, and Top 16 (43 male and 38 female), best finish of 4th-

16th. The remaining athletes were grouped as Others.  

Career trajectories  

Individual performance trajectories were generated using the high-performance mixed 

linear model procedure (Proc Hpmixed) in the Statistical Analysis System (Version 9.3, SAS 

Institute, Cary, NC), (see APPENDIX A). The fixed-model included a mean quadratic trend for 

age, a linear trend for calendar year, and an intercept to adjust Sprint-distance into Olympic-

distance times (providing two overall means race times for Sprint and Olympic-distance races); 

all of these factors were interacted with athlete grouping factor with three levels (Top 3, Top 16, 

Others). Random effects were included to derive individual age quadratic trends and year-

adjustments for each athlete, the latter representing consistent deviation from the quadratic fitting 

in a particular year (due to injury, new training, etc.). A random effect for race accounted for mean 

effect of environmental and other course-related factors (e.g., varying weather and water 

conditions, course distances, profiles of cycle and run courses) on performance times1. An 

unstructured covariance matrix was specified for the random effects representing the individual 

1Triathlon performance need to be normalised because triathlon races are not performed in a standard 

environment. The normalization is achieved in mixed modelling by including identity of the athletes 

(random effect for athlete), which estimates mean abilities for athletes, and by clustering performances 

within a race (random effect for race), which identifies changes in performance that are the same for all the 

athletes that competed in that particular, identifying slower and faster races compared to a mean. The slow 

and fast races (after accounting for athlete identity) arise from effects of environmental and other course-

related factors in performance times, because these changes are computed as all the athletes competed in 

every race. 
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quadratic trajectories to allow for correlation between the three parameters defining the 

trajectories. The residual random effect, representing race-to-race athlete variability, was 

specified differently according to the type of competition (three levels: Elite World Championships, 

Olympic Games and World Triathlon Series; World Cup, European Championships and U23 

World Championships; Junior World Championships). This model was applied to each stage 

(swim, cycle, run and total time) and to each gender separately. Race times were log-transformed 

to yield the effects and errors in percent changes from the mean. Observations were considered 

outliers and excluded from the analysis if standardize residuals were greater than 4 standard 

deviations from the predicted value; 54 swimming, 88 cycling, 80 running and 63 total 

performances were thereby excluded from the analyses. The appropriateness of the model was 

investigated by analysis of residuals: plots for residuals vs predicted performances were 

inspected to ensure there was no unacceptable non-uniformity, and residuals were plotted 

against age (centred on age of peak performance) to ensure no substantial systematic trend in 

the residuals on either side of age of peak performance (the minimum of each quadratic curve). 

The quadratic model was deemed appropriate to represent performance changes with age. 

Conversion of Sprint to Olympic times 

A conversion factor for adjusting Sprint times to Olympic-distance times is implicit in the 

trajectories model as the difference between the two levels of the corresponding fixed effect (the 

two intercepts used in the model). There were little differences between the conversion factors of 

the three groups (Top 3, Top 16 and Others), so factors were averaged. To generate a conversion 

factor of the most use to the sport, we repeated the analysis excluding junior and Under-23 

performances, although the resulting conversion factor was very similar to that for all athletes. 

Age of peak performance and age-related performance change 

Athletes’ age of peak performance was determined as the minimum of the individual 

quadratic age trend. For any individual trajectory that did not show the expected quadratic 

behaviour, age of peak performance was not determined and their values did not contribute to 

the mean. For the included athletes, age of their best placing at a World Championships or 

Olympic Games (age of best performance) was also identified. Age-related performance change 

was calculated for each athlete as the performance change over the 5-year period leading to age 

of peak total performance. Age of peak performance and age-related performance change for 

swimming, cycling, running stages and total performance are presented as means and standard 

deviations. These statistics were compared and magnitudes of standardized differences were 

assessed using thresholds of 0.2, 0.6 and 1.2 for small, moderate and large, respectively (W.G. 

Hopkins, et al., 2009). Uncertainty was calculated as 90% confidence limits. 

Performance benchmark 

A benchmark range for performance changes with age, representing the typical age-

related performance changes among successful athletes, was obtained by combining the career 

trajectories of Top athletes. The mean performance for each year of age was calculated using a 
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meta-analytic model, where age-estimates from individual athletes were combined using the 

inverse of the square of the standard error of the estimate as a weighting factor. The upper and 

lower limits of the benchmark range were calculated as the 90% reference range, assuming a 

normal distribution with mean (as just described) and standard deviation given by the square root 

of the sum of the square of the standard error of estimated mean and the between-athletes 

variance, both provided by the meta-analytic model.  

Prediction of race outcomes 

Performances at 2012 London Olympic Games were predicted from the last race before 

the London Olympics (2012 Hamburg World Triathlon Series race). The mixed model for 

developing trajectories was modified by including venue as a predictor to characterize the effect 

of specific venues. Athletes’ performances were predicted by extrapolating each athlete’s 

quadratic trajectory to the dates of Olympic races and assuming the same conditions as in the 

2011 London test event (which was held on a very similar race course and with a similar field of 

competition, as many countries used these performances for Olympic selection). We simulated 

5000 (a large number of races) individual races taking into account athletes’ race-to-race 

variability as follows. In each race, each athlete’s performance was given by the sum of their 

predicted value plus a random unit normal deviate multiplied by the standard error of the predicted 

value and an extra component, derived by randomly selecting from the residuals obtained with 

the original mixed model for trajectories. Chance of winning (the proportion of the 5000 races 

won by each athlete) and ranking of the chances were then determined for athletes competing at 

the London Olympics. The predictability of performance was assessed by correlating the log-

transformed rankings derived from chance of winning with the log-transformed observed race 

placings. The performance of the female athlete Paula Findlay was not included as it was a clear 

outlier: she had been injured, was not physically fully prepared and had not been competing 

internationally for more than a year (Yahoo, 2012). Correlations between log-transformed 

placings in Olympics and in each of 2012 World Triathlon Series races were also calculated and 

averaged using the Fisher transformation. The log-transformation of placings was used to give 

equal importance to percent or factor differences in placings rather than absolute differences. For 

example, the difference between second and first is equivalent to the difference between tenth 

and fifth with log transformation and to the difference between tenth and ninth without 

transformation. Correlations were assessed using 0.1, 0.3, 0.5, 0.7, 0.9 as thresholds for small, 

moderate, large, very large and extremely large (W.G. Hopkins, et al., 2009) and uncertainty 

expressed as 90% confidence limits. Predictability of race outcomes is affected by the variability 

of athletes’ performances. Reliability analyses were performed for each calendar year for men 

and women to estimate typical differences between athletes and typical variation of athletes’ total 

performance time from one race to the next.  The typical differences between athletes and the 

typical variation in men’s and women’s performances (expressed as SD) were used to explain 

differences in correlations. 
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3.3. Results 

Raw mean performance times (expressed as h:min:s) for Sprint and Olympic distance 

races for both gender are shown in Table 5. Variations between athletes within a race, 

representing the typical spread of performances in a race, are also displayed in Table 5.  

Derived from the mixed model, mean times improved as a function of calendar year, at a 

rate of 0.25% (90% confidence limits, ±0.13%), 0.13% (±0.12%) and 0.09% (±0.12%) for men 

and 0.35% (±0.17%), 0.24% (±0.12%) and 0.15% (±0.12%) for women, for the Top 3, Top 16 and 

Other athletes, respectively. The conversion factor for mean time between elite Sprint and 

Olympic distance races was 1.98 (±0.04) for both genders. In addition to the uncertainties shown 

in Table 5, athletes’ performances varied from one race to the next typically by 1.5% of the race 

time for men and 1.5% of the race time for women (at high level races: World Triathlon Series, 

Elite World Championships and Olympic Games). In swimming, cycling and running the typical 

race-to-race variabilities were 1.1%, 1.7% and 3.2% for men and 1.5%, 1.7% and 2.8% for 

women, respectively. Uncertainties in these estimates of variability were negligible. A simple 

reliability analysis allowing for within-athlete within- and between-year variability for the 55 

athletes competing at the 2012 Olympic Games (with an average of 37 performances per male 

athlete and 32 performances per female athlete) showed a 1.6% and 1.5% for the race-to-race  

within year variability over the 13-year period for men and women, differences between athletes 

within year of 1.6% for men and 1.4% for women and additional differences between athletes 

from year to year 0.8% for men and 0.9% for women, resulting in intraclass correlation coefficient 

(ICC) between years of 0.45 (90% confidence limits, ±0.09) for men and 0.38 (±0.09) for women 

and within-year ICC of 0.56 (±0.09) for men and women.  

 

Table 5. Number of competitors (mean ± SD), race times (mean ± SD, min) and 
typical spread of performances in a race (mean of standard deviations on the 
performance times in each race) in 224 men’s and 222 women’s Sprint and Olympic 
distance triathlon races between 2000 and 2012. 

 Men Women 
Sprint   

Competitors per race 60 ± 16 46 ± 13 
Mean race time 59.5 ± 4.9 66.7 ± 5.6 
SD of race time ± 2.7 ± 3.1 

Olympic   
Competitors per race 48 ± 13 35 ± 13 
Mean race time 114.2 ± 5.1 127.0 ± 5.7 
SD of race time ± 3.1 ± 3.9 

 

Figure 3 illustrates the difference between observed and corrected performances’ times, 

after observed times being adjusted to a mean race. An athlete performance trajectory, displayed 

as the black curve, represents the fitting of a quadratic age trend to corrected times. 
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Figure 3. Observed (triangle) and corrected (circle) performances’ times for an athlete, after times 
being adjusted to a mean race. The black curve is an athlete’s trajectory, illustrating the fitting of 
a quadratic age trend to the corrected times. 

 

Figure 4 shows the performance trajectories as functions of age for Top male and female 

athletes on the three stages individually and total race time. In this figure, Top 3 athletes’ 

performance trajectories are displayed in black while Top 16 athletes’ performances are 

presented in grey. Different patterns of progression were observed for swimming, cycling, running 

and total performances and between genders.  

Performance trajectories were used to estimate age of peak performance and age-related 

performance change (Table 6). Differences between ages of peak performance for genders and 

stages are trivial to moderate in magnitude, and most of the substantial differences are clear. 

There was a trivial difference between age of peak performance and age of best performance 

(age of best placing in a race; data not shown) at World Championship and/or Olympic Games. 

Age-related performance changes were evaluated over the 5-year period leading to athletes’ 

peak performance; with a negative change representing an improvement (decrease on 

performance times).  
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Table 6. Predicted age of peak performance and 5-year improvement for 
swim, bike, run and total performance for the “top” and all athletes (see 
Methods for athletes’ classification). Only athletes who had already 
reached their predicted age of best performance were included in these 
estimates (30 for Top men, 30 for Top women, 152 for Other men and 79 
for Other women). 
 Swim Bike Run Total 
Age of Peak Performance 

Top     
Men 25 ± 4 29 ± 3 28 ± 2 28 ± 2 
Women 28 ± 2 28 ± 3 26 ± 5 27 ± 4 

Other     
Men 26 ± 3 29 ± 2 29 ± 2 29 ± 2 
Women 26 ± 5 28 ± 4 30 ± 3 28 ± 3 

 

5-year improvement to peak performance (%) 
Top     

Men -0.8 ± 0.5 0.7 ± 0.3 -3.5 ± 1.1 -0.9 ± 0.3 
Women -1.1 ± 1.0 -0.2 ± 0.4 -5.1 ± 2.6 -1.9 ± 0.9 

Other     
Men -0.9 ± 0.5 0.5 ± 0.2 -2.1 ± 0.8 -0.7 ± 0.1 
Women -0.5 ± 0.8 0.0 ± 0.3 -2.4 ± 0.8 -0.7 ± 0.2 

Data are mean ± SD. 
Uncertainties (90% confidence limits) for the means are ~0.3SD for top 
men and women and ~0.15SD for other men and ~0.2SD for other 
women. 
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Figure 4. Performance trajectories as functions of age for top men and women for swimming, 
cycling, running and total performance time. Top 3 athletes’ trajectories are displayed in black 
while Top 16 are presented in grey. (See Methods for athletes’ classifications.) 
 

 Top athletes’ performances were then combined to produce a performance 

benchmark range, representing the typical pattern of performance changes with age. As it 

shown in Figure 5, an athlete’s performance trajectory and year performance can then be 

assessed against the benchmark range. 
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Figure 5. Comparison of an athlete’s season performance and his trajectory against the typical 
age-related changes in running performance (mean and 90% performance range, see methods).  

 

The probabilities (chances) of winning the 2012 London Olympic Games were plotted 

against the observed race time at the Olympics (Figure 6). Correlations of Olympic placings with 

predictions using trajectories and with placings at the last race before the Olympics are shown in 

Figure 7. The mean correlations between Olympic placings and placings in each of the 2012 

World Triathlon Series races before the Olympics are also shown. Predictions using trajectories 

produced the highest correlation for men, but for women there was little difference between the 

three approaches. 

 
Figure 6. Relationship between observed performances in the 2012 London Olympics and 
predicted chances of winning. Chances of winning were predicted using athletes’ career 
trajectories derived including races up to the Olympics and assuming similar race conditions 
(environmental and race-course profile) as 2011 London test event. 
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Figure 7. Correlations (with 90% confidence limits) of observed Olympic placings with predictions 
using trajectories and with placings at the last race before the Olympics. The mean correlation 
between Olympic placings and placings in each of the 2012 World Triathlon Series races before 
the Olympics is also shown. 

 

3.4. Discussion 

In this study we developed individual career trajectories of elite triathletes, investigating 

performance changes for the swim, cycle and run race stages and total times. Performance 

change was modelled as a quadratic function of age and a linear function of calendar year in a 

mixed model that accounted for difference in mean race times arising from environmental and 

other course-related factors. By markedly reducing the scatter of race times, the model produced 

well-fitting individual quadratic trajectories that were suitable for assessment of athletes’ 

performance changes during their competitive career.  

Analysis of the residuals from the mixed model provided good evidence that the underlying 

quadratic function of age with clusters for race and athlete was appropriate for tracking athletes’ 

performance changes over an age span of 15 to 41 years. The other models used previously to 

describe individual performance changes in other sports would not have worked well with triathlon 

data. Alam et al.(Alam, et al., 2008) modelled the performance of boys and girls in cross-country 

skiing as a sigmoid function of age to describe effects of puberty. Their analysis was limited to an 

age span of 10 to 18 years and accounted for environmental factors by standardizing race times 

using the median of each race, which did not account properly for repeated measurement and 

athletes’ abilities. For track-and-field athletics and swimming, Berthelot et al. (Berthelot, et al., 

2012)  modelled athletes’ annual best performances as a double exponential function of age by 

assuming performances from junior through elite ages improved exponentially to a plateau and 

then declined exponentially from elite through master ages. This complex non-linear model was 

fitted to each athlete separately, so there was no correction for environmental and other race-

related factors. Our model used race clusters to allow adjustment to an overall mean race time, 

thereby accounting for effect of environmental conditions and other race-course related factors 

that introduce extra variation in athletes’ performances. The reduction of the scatter between 
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observed and corrected performances is evident in Figure 3. Furthermore, our model included 

clusterings for athletes and athletes within year. The repeated measurements for athletes 

produced individual career trajectories, highlighting athletes’ differences resulting from different 

physiology, training history and nutrition regimes. The repeated measurement for athletes within 

a year was included to identify consistent changes in performance arising for short-term (one-

year) changes in training programmes, nutrition strategies, injuries, and so on.  

Career trajectories allow a direct and visually clear evaluation of athletes’ performance 

changes (Figure 4). For top men and women, performance changes for total time are closer to 

those for running than those for swimming and cycling. Running is also the triathlon stage where 

individual trajectories have the widest spread in time, indicating that differences among athletes 

in total performance arise mostly from differences in athletes’ running performance. These 

findings are not unexpected, as running performance is the most important stage for success in 

triathlon (Fröhlich, Klein, Pieter, Emrich, & Gießing, 2008; Knechtle & Kohler, 2009; Vleck, Bürgi, 

& Bently, 2006).  

Our career trajectories are consistent with the findings of Landers et al. (2000), who 

analysed senior performance times in the 1997 World Championships and found the smallest 

percent difference for swim times (2.2% for men and 4.4% for women) and the biggest percent 

difference for run times (5.0% for men and 5.9% for women). There are several explanations for 

the differences between trajectories for swimming, cycling and running. Performance 

improvements within the athlete can result from physical and physiological maturation, training 

adaptation, improvement in skills and biomechanics, and increase in knowledge of race tactics 

(Mikulic, 2011; Sowell & Mounts Jr, 2005; Stevenson, et al., 2012). Differences in the 

development of physiology, biomechanics and skill may explain the fact that running had the 

largest 5-year improvement (Table 6), in particular the improvement in economy arising from the 

increase in muscle and tendon stiffness with age and training (Dumke, Pfaffenroth, McBride, & 

McCauley, 2010; Saunders, Pyne, Telford, & Hawley, 2004). Triathletes are also likely to focus 

their training more on running (Bürgi, 2013), which would make improvement in aerobic power 

more evident in this stage. Furthermore, during the swim and cycle stages of a race, athletes 

must be strategic: they need a good position for the subsequent stage, but by drafting they can 

reduce energy costs up to 30% (Hausswirth & Brisswalter, 2008) and thereby save energy for 

the running stage. Therefore age-related changes in athletes’ endurance abilities may not be 

manifested fully in the swimming and cycling trajectories. It should also be noted that the majority 

of men’s cycling trajectories show an unexpected increase in duration of the cycling stage with 

age. Two possible explanations for this effect are a gradual increase in difficulty of more recent 

cycling courses compared with those in the early 2000s (mean cycling times for the top 16 

athletes are increasing with calendar year, Chapter 4) and a potential race strategy, where 

athletes may not fully manifest their cycling ability in order to not compromise their running 

performances.  The effect is not evident in women’s cycling trajectories, presumably because the 

greater performance improvement for women (shown across all the stages, Table 6) offsets the 

slowing of cycling times. Furthermore, pack riding must reduce the effect of age on cycling 

performance time, because the time of an individual athlete while riding in a pack will reflect the 
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average of the performances of that pack. If there are smaller packs with women (Vleck, Bentley, 

Millet, & Bürgi, 2008), there will a bigger effect of age on the women’s trajectories. 

Differences in performance changes for total time between top men and women are also 

evident in the results: men show a smaller spread of performances and trajectories of a similar 

shape (Figure 2). This difference probably reflects a different developmental phase of the sport 

between the genders. Men’s uniformity presumably indicates a group of athletes who have been 

training since early ages as triathletes, who show similar levels of abilities for swimming and 

cycling and for whom running is the most important stage for total performance. On other hand, 

the heterogeneity of women’s trajectories for total time and their greater performance 

improvements reflect less depth in women’s competitiveness. Similar phenomenon has occurred 

in other triathlon modalities (Lepers, Knechtle, & Stapley, 2013), where bigger differences 

between winner and tenth-placed competitors have been reported for women compared with 

those for men (although women’s differences have been decreasing faster than men’s). The 

smaller depth of women’s competitiveness results in a wider range in abilities, training and 

physiology among athletes and therefore a wider variety of “ways” for women to succeed in 

triathlon. 

Our study is not the first to address age-related changes in triathlon performance. Previous 

researchers have used cross-sectional studies with age-group athletes. Performances were 

deemed similar between ages 20-35 and significant performance declines were reported after 

ages 40 to 55, depending on stage and triathlon distance (Bernard, et al., 2010; Etter, et al., 2013; 

Lepers, et al., 2013; Lepers, et al., 2009). By developing a quadratic model to track performance 

progression of individuals within the period of their elite career, we have revealed performance 

differences across ages (Figure 2) that were not evident in these cross-sectional studies. 

Estimates of age of peak performance in triathlon were approximately 26-28 years, with 

trivial to moderate differences between genders and across stages. Our estimates of age of peak 

performance align well with age of athletes’ best performance at a World Championships or 

Olympic Games. They were also consistent with previous findings for age of the best triathletes 

in an Olympic distance race: 27 ± 6 y for men 28 ± 6 y for women (Etter, et al., 2013). In longer 

distance triathlon, age of best Ironman triathletes was 33-34 y (Gallmann, Knechtle, Rüst, 

Rosemann, & Lepers, 2013; Rüst, Knechtle, Knechtle, Rosemann, & Lepers, 2012a). 

Physiological characteristics are similar for Olympic and long-distance triathletes (Grégoire P 

Millet, Dréano, & Bentley, 2003), so the difference between ages of peak performance are likely 

to be due to the fact that many triathletes compete in Ironman after retiring from Olympic 

competition, and that longer events may require more years of race experience.  

Analyses of performance trajectories provide evidence of the typical pattern of progression 

of successful triathletes, which should assist with the setting of benchmarks for talent 

identification and development programmes. The analysis of athletes’ trajectories and their 

season performances ought also to help detect successful (and unsuccessful) performance 

improvement strategies. In Figure 5, we gave an example of these applications. The athlete 

shown is progressing within the successful range, and at age 21 he improved his running 

performance substantially. A subsequent analysis of this athlete’s training history may reveal 
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whether a new training approach, coach, nutrition strategy and so on contributed to the 

performance improvement. Furthermore, the comparison of swim, cycle and run trajectories of 

the same athlete against benchmarks will highlight the athlete’s strongest and weakest stages, 

providing additional guidance for the athlete’s career. 

Career trajectories can also be used to predict performance for men. We found strong 

associations between observed and predicted performances at the 2012 London Olympic 

Games, although these associations were not much higher than those obtained with the simpler 

approach of correlating typical race placings at previous competition(s) with Olympic placings. 

Additionally, all the correlations were higher for the men than for the women. Analysis of the 

residuals over the 13-year period for the athletes competing at London Olympics showed that 

men and women have similar race-to-race variability, but male triathletes showed larger 

differences between competitors compared with that for women. The relationship of difference 

between athletes and within-athlete variability lead to the greater intraclass correlation coefficient 

(within year) for men. The particular lower predictability of women performance using trajectories 

can also be presumably explained by the wider diversity of trajectories shown by women (Figure 

4), leading to a poorer fitting of trajectories for women. 

Practical applications for tracking triathletes' performances with our method could be 

developed further. First, tables showing annual percent improvements for each year of age, as 

means and standard deviations, will make expected performance goals clear and easy to 

communicate to coaches and athletes. Secondly, career trajectories were developed giving equal 

importance to each performance; however predictions for future performance might be more 

accurate if more weight is assigned to more recent performances. Thirdly, performance 

predictions may also be improved by including random effects to specify individual responses to 

environmental and other course-related factors (e.g., temperature, wetsuit swim, race-course 

profiles) and importance of the race (e.g., Olympic Games, World Triathlon Series, World Cup 

races). Fourthly, data were limited to international races performed at a professional level 

performances at younger ages in lower level competitions should be included in the analysis to 

make the method more useful for talent identification. For this purpose data of substantial 

numbers of the same athletes competing at international and at lower level competitions would 

be needed. Finally, an athlete's season performance appearing as an unexpectedly large 

deviation from the quadratic trajectory could provide evidence of the use of a banned 

performance-enhancing substance.  

 

3.5. Conclusion 

We have presented a new method for tracking the development of elite triathletes 

performing internationally. The resulting career trajectories and reference ranges represent 

objective measures of performance that should provide useful information for funding talented 

athletes and identifying successful (or unsuccessful) performance enhancement strategies. 

Furthermore, the comparison of an athlete’s three trajectories (swim, cycle and run) with 

corresponding reference ranges could also help apportion appropriate training focus to the 
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specific race stages. The full use of the method presented here to address relative strength and 

weakness of a given athlete in the different race stages will need to consider the contribution of 

each stage to total time. Trajectories also offer a small advantage over usual race placings for 

predicting men’s performance, but further refinements of the model, by including athletes’ 

individual responses to race conditions, may allow more accurate projection of triathletes’ 

trajectories into the future.  
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CHAPTER 4 

PERFORMANCE PROGRESSION IN ELITE OLYMPIC-DISTANCE 
TRIATHLON 

 

This chapter comprises the following paper submitted to Scandinavian Journal of Medicine 

and Science in Sports: 

Malcata, R. M., Hopkins, W. G., & Pearson, S. Performance progression in elite Olympic-

distance triathlon. Scandinavian Journal of Medicine and Science in Sports. 

 

Overview 

Determining year-to-year performance trends is problematic in sports with large 

environmental effects. Purpose: To determine progressions in elite Olympic-distance triathlon 

times and trends in contribution of swim, cycle and run race stages to overall performances. 
Methods: Performance times of athletes competing in World Championships, World Triathlon 

Series, Olympics and World Cup races from 2000 through 2012 were obtained from triathlon.org. 

The top 16 performances in each race were analysed using a mixed linear model to derive year 

trends by adjusting for repeated measurements of athletes, race identity and race type. 

Contribution of each stage was assessed by correlating overall placing’s with performance times 

in the individual stage. Results: Typical race-to-race differences, which reflect variation arising 

from environmental and other course-related factors, were ~4% for overall times. From 2000 to 

2012 changes in performance showed different year trends for race stages and genders, with 

running showing the largest improvement and women progressing faster than men. Running 

made the highest contribution to overall performance and there was an apparent gradual increase 

in this contribution over the years. Conclusion: Our data suggests similarity between athletes’ 

abilities during swim and cycle and that differentiation among top triathletes is made mainly during 

running.  
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4.1. Introduction 

Sport performance continues evolving as result of innovations with training, nutrition and 

equipment. It is important to monitor performance to provide coaches and support staff with an 

evidence based approach for guiding athletes’ preparation. In many sports, effects of external 

factors, such as temperature, wind and course profiles, produce extra variation in performance 

that needs to be taken into accounted when assessing performance. Triathlon, which consists of 

a sequence of a swimming, cycling and running, is one such sport. 
Performance progression in triathlon has been studied mainly by Lepers and colleagues. 

Participation rates, progression of mean top times and gender differences were investigated for 

the various triathlon modalities: Olympic (Bernard, et al., 2010; Etter, et al., 2013; Lepers, et al., 

2009), Ironman (Baker & Tang, 2010; Lepers, 2008; Lepers & Maffiuletti, 2011; Rüst, Knechtle, 

et al., 2012a; Sowell & Mounts Jr, 2005; Stiefel, Knechtle, & Lepers, 2012), off-road (Lepers & 

Stapley, 2010, 2011) and ultra-endurance triathlons (Knechtle, et al., 2010; Lepers, Knechtle, 

Knechtle, & Rosemann, 2011; Rüst, Knechtle, Knechtle, Rosemann, & Lepers, 2012b). In 

previous studies, performance progression has been assessed using mean time of top athletes 

at the same race over multiple years. Although this approach reduces effects of course profile on 

performance times, other factors can have substantial effect of the estimates of progression. 

Depending on the study, authors have not accounted for repeated measurements from the same 

athlete competing over multiple years, calibre of athletes competing, and difference in 

environmental conditions. Mixed modelling provides a statistical approach to overcome such 

limitations. The first aim of this study was therefore to determine year trends for the swimming, 

cycling, running and overall performance times in elite Olympic triathlon using mixed modelling. 

A unique aspect of performance progression in triathlon is the contribution of swim, cycle 

and run stages to overall performance. Although researchers are agreed on the importance of 

running phase, there has been more debate on the importance of swimming and cycling (Fröhlich, 

et al., 2008; Landers, et al., 2000; G.P. Millet & Bentley, 2004; Vleck, et al., 2006). Furthermore, 

no one has examined how the contributions of the three stages have changed over the years. A 

second aim of this study was therefore to address the contributions of the three stages over the 

years, and examine potential differences between the three development groups: junior, under-

23 and elite athletes. 

 

4.2.  Methods 

Data 

Official times of international triathlon races from World Triathlon Series (titled World 

Championship Series between 2009-2011), World Cup, World Championships (Junior, Under-23 

and Elite) and Olympic Games between 2000 and 2012 were downloaded from triathlon.org, 

together with race dates. Only top-16 performances from each race were included. Overall, 358 

international competitions (180 men and 178 women) were raced over this period, with a total of 

362 individual male and 342 individual female athletes who ever finished within the top 16 of a 

 55 



 

  

race.  Olympic Games and World Championships races for elite athletes were categorized as 

key races. 

 

Year Trends 

Year trends were generated using mixed linear model procedure in the Statistical Analysis 

System (Version 9.2, SAS Institute, Cary, NC), (see APPENDIX A). The fixed effect model 

included an intercept and a linear trend for calendar year. Random effects included adjustment 

for athlete’s identity, accounting for repeated measurements of the same athlete over multiple 

races; annual adjustment for athlete, accounting for an annual consistent variation of athlete’s 

performances (consequence of a new training programme, different nutrition strategy, injury); and 

adjustment for race identity, the clustering of all performance in each race accounts for the effect 

of environmental and other course-related factors on performances. The residual random effect 

representing the within athlete race-to-race variability was specified according to the level of 

competition, assuming two different levels: World Triathlon Series, World Championships and 

Olympic Games; and World Cup (often a weaker field of competition and potentially more 

variable). Race times were log-transformed to yield the effects and errors as percentage changes 

of the mean. Observations were considered outliers and excluded from the analysis if residuals 

were greater than four standard deviations (15 swimming, 28 cycling, 17 running and 20 overall 

performances were excluded). The appropriateness of the model was investigated by analysis of 

distribution of all random effects to ensure no skewed distributions, and analysis of residuals: 

plots for residuals vs predicted performances were inspected to ensure there was no 

unacceptable non-uniformity, and residuals were plotted against year to ensure no substantial 

systematic trend in the residuals. The mixed linear model was deemed appropriate to represent 

mean performance changes with calendar year. 

Year trends were estimated for each stage (swim, cycle, run and overall performance) and 

each gender separately. The same model was also applied using performances at key races 

(Olympics Games and World Championships) only, to estimate performance progression at main 

events. Future mean performance times for men and women, in each stage at all races and at 

key races only were predicted by extrapolating year trends up to four years out (coincidentally 

with 2016, year of the Rio Olympic Games). Magnitudes of changes in mean performance times 

were assessed using a modified scale for standardized differences in means (W.G. Hopkins, et 

al., 2009): thresholds for small, moderate, large, very large and extremely large were 0.2, 0.6, 

1.2, 2.0 and 4.0 of the typical race-to-race variation at key races for each stage and gender. The 

usual thresholds based on the race-to-race variability of individual athletes’ performance times 

are not appropriate for assessing trends in mean race times, because those thresholds were 

defined to assess change of individual athletes as opposed to assess changes in mean. Typical 

race-to-race variations were determined as the standard deviation of the random effect for race 

identity. Uncertainty on the estimates of performance change and predicted mean times were 

derived as 90% confidence limits.  
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Performances of athletes were categorized according to placing in each race as Top 3, for 

athletes finishing first to third; Top 8, for athletes finishing between fourth to eighth; and Top 16, 

for athletes finishing between ninth and 16th. Year trends were then calculated for each stage 

and gender for these three groups. Trivial differences were found between year progressions of 

these three groups; we then decided to combine all data and present only the analysis using all 

the top 16 performances in each race. 

Gender Differences 

Gender differences were calculated for swim, cycle, run and overall performance as the 

difference between mean performance times for men and women, with means estimated by the 

year progression model (as described previously). Gender differences were calculated using a 

meta-analytic model, where the difference between annual mean performance estimates for men 

and women was weighted by the inverse of the square of the standard error of the estimates. 

Contribution of each race stage 

Relative contribution of swim, cycle and run was evaluated by calculating correlation 

between log-transformed overall placings and performance rank in each stage. The log-

transformation of placings was used to give equal importance to percent or factor differences in 

placings rather than absolute differences (as discussed in Chapter 3). For example, the difference 

between second and first is equivalent to the difference between tenth and fifth with log 

transformation and to the difference between tenth and ninth without transformation. Correlations 

between each stage and overall performance times were not performed as results would be 

biased by the proportional time spent in each of the stage. Annual correlations were derived using 

a Fisher-Z transformation to each race correlation and were then plotted against calendar year. 

A linear calendar year trend was determine for the Fisher-Z transformed correlations and after 

back transformation, the relationship between correlation and performance was non-linear. To 

compare the development groups (juniors, under-23 and elite), we calculated similar correlations 

using performance at World Championships races only. These data were chosen as World 

Championships are disputed in the same venue, over the same weekend, with junior athletes 

competing in the sprint distance. It should be noted that in 2000 and 2001, junior races were 

raced as Olympic distance and there were no Under-23 competitions. Correlations were 

assessed using 0.1, 0.3, 0.5, 0.7, 0.9 as thresholds for small, moderate, large, very large and 

extremely large (W.G. Hopkins, et al., 2009), and difference in the year trends analysed 

accordingly to the overlap of the 90% confidence limits of each trend. 

 

4.3. Results 

Table 7 presents race times (mean ± standard deviation) and typical differences between 

athletes’ performances within a race for the international races from 2000 through 2012. When 

analysed as percentage of mean stage times, running was the stage with the largest differences 

between athletes, whereas swimming and cycling stages had the highest race-to-race variation. 
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Typical differences between athletes within a race and typical differences between mean race 

times derived by mixed modelling were similar to these raw values (data not shown). 

The analysis of key races only (World Championships and Olympic Games) produced the 

following race-to-race variability for swim, cycle, run and overall: 3.5%, 8.5%, 2.8%, 4.6% for men 

and 4.9%, 8.4%, 1.8%, 4.5% for women. These standard-deviations were used to set thresholds 

for assessing important performance changes (see Methods). 

 

Figure 8 illustrates raw means and modelled year trends of swim, cycle, run and overall 

performance times for men and women at key races between 2000 and 2012. Changes in mean 

performance times were evaluated over four years, with a negative change representing an 

improvement (decrease in performance time). The mean change (±90% confidence limits) in 

performance at key races for swimming, cycling, running and overall were: -1.7% (±1.3%), 0.6% 

(±2.9%), -1.8% (±1.1%) and 0.0% (±1.7%) for men and -0.6% (±2.0%), 0.4% (±3.1%), -2.1% 

(±1.1%) and -0.4% (±1.8%) for women per four years. Performance changes (and confidence 

limits) were proportional larger for longer periods of time. The majority of performance 

progressions for all races were similar to those for key races, with differences being observed for 

men’s swimming and both men’s and women’s cycling (data not shown). In men’s swimming, the 

clear improvement (reduction) in times during key races contrasted with the potential increase of 

0.3% (±1.0%) of mean swimming times for all races, while in cycling, the unclear changes in 

performance at key races contrasted with a decline in mean performance of 1.4% (±0.9%) for 

men and 0.8% (±0.9%) for women per four years when taking into account all races. 

Predictions of mean times for 2016 in key races are presented in Table 8. Predictions were 

determined by extrapolating year performance trends towards the Olympic year of 2016.  

Table 7.  Mean race time (min) and typical difference (min) between athletes within a race for top 16 
athletes in every World Cup, World Triathlon Series, World Championships and Olympic Games race 
from 2000 through 2012. In total, data consisted of 362 individual male and 342 female athletes 
competing in 180 and 178 races, respectively. 
 Swim Cycle Run Overall 
Men     

Mean race time (mean ± SD) 18.3 ± 1.2 59.9 ± 4.1 32.2 ± 1.3 111. 2 ± 4.7 
Within-race SD (mean) ± 0.3 ± 0.5 ± 0.8 ± 0.8 

Women     
Mean race time (mean ± SD) 19.8 ± 1.5 66.1 ± 4.4 36.9 ± 1.9 123.8 ± 5.4 
Within-race SD (mean) ± 0.5 ± 0.7 ± 1.2 ± 1.6 

Sprint-distance races were not included in the calculation of times. 

Table 8. Predicted mean top-16 times and 90% confidence limits (min) for swim, cycle, run 
and overall in 2016. Estimates were predicted by extrapolating year progressions towards 
2016, using data from key races (World Championships and Olympic Games) between 2000 
and 2012 shown in Figure 8. 

 Predicted time in 2016 (min) 
 Swim Cycle Run Overall 

Men 17.4; ±0.6 60.4; ±4.6 30.3; ±0.9 109.9; ±4.9 
Women 19.3; ±1.0 65.5; ±5.1 34.3; ±0.9 120.6; ±5.5 
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Figure 8.  Progression of mean swimming, cycling, running and overall performance times for the top 16 
male and female athletes in every key race (World Championships and Olympic Games) between 2000 and 
2012. Estimated linear year trends and 90% confidence limits are presented as bold and dashed lines, 
respectively. 
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Figure 9. Differences between mean times for the top-16 men and top-16 women in all races (World Cup, 
World Triathlon Series, World Championships and Olympic Games races; 180 men’s and 178 women’s 
races) between 2000 and 2012 for swimming, cycling, running and overall performance. Estimated linear 
year trends and 90% confidence limits are presented as bold and dashed lines, respectively.  

 

Gender differences are presented in Figure 9. Between 2000 and 2012 swimming was the 

stage with the smallest gender differences and was the only stage in which gender differences 

have increased a little. For cycling, running and overall performance gender differences have 

decreased, with cycling difference changing with the fastest rate.   

In Figure 10, annual-mean correlations of performance times in each stage with overall 

placings for all elite races are presented as a function of calendar year. Correlations for running 

stage were the highest, with women showing in 2012 the same correlation as men. Although men 

and women showed a similar increase in running and decline on cycling correlations over the 
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years, men’s correlations for swimming were stable while those for women declined. Figure 10 

also shows correlations for performances at World Championships only, for elite and junior 

athletes. Correlations for the elite athletes at World Championships showed a pattern of 

progression comparable with those for all races. Differences in the progressions are evident 

between junior and elite men: cycling and running have become equally important for 

performance of juniors, while elites show the opposite trend. Women’s correlation progressed 

similarly for the juniors and elites among the three development groups, with running on average 

having the highest contribution. The patterns of progression for the under-23 athletes were 

intermediate between those of juniors and elites (data not shown). 

 

 
Figure 10. Correlations of performance times in each stage with overall placings in all races (World Cup, 
World Triathlon Series, World Championships and Olympic Games), in elite and in junior World 
Championships, for men and women between 2000 and 2012. Regression lines for each stage are shown.  
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4.4. Discussion 

This study was the first where performance progressions for any triathlon modality were 

investigated accounting properly for repeated measurements for athletes and extra variation 

arising from environmental and other course-related factors. Although there was little change in 

overall performance time in Olympic-distance triathlon races between 2000 and 2012, there were 

different progressions for swimming, cycling and running stages. Effects of individual stages on 

overall performance times have also changed, reflecting an increasing importance for running in 

triathlon. 

A novel aspect of this study was the use of mixed modelling to properly account for the 

repeated measurements and estimate the effect of external sources of variation. The analysis of 

residuals and distributions of random effects provided evidence that the underlying model was 

appropriate to estimate performance progressions. Our model included clusters for athletes, 

which accounted for individual differences arising from differences in training and competition 

experience, and clusters for races, which allowed for consistent deviations of race-performance 

times from the year trends arising from of environmental and other course-related factors. These 

consistent deviations reflect the impact of environmental and other course-related factors in the 

mean performance time in a race. Windy or wet conditions can result in slower times across all 

three stages, whereas other factors can affect mainly one stage. For example, temperature 

determines whether or not it is a wetsuit swim, which can lead to faster times (Chatard, et al., 

1995). Race courses also contribute to the variation of performance times. Swim courses vary in 

geometry (buoy distance and configuration), in water current, and whether the water is fresh or 

salty; cycle and run courses vary in elevation and number of sharp curves, and even the distance 

of the cycle stage can vary up to 10 % of the standard 40 km (ITU, 2013). Cycling was the race 

stage with the highest difference in mean performance times between races (after accounting for 

differences in mean performance times arising for the different abilities of the athletes competing 

in each race). 

We would expect gradual improvement in performance over the years owing to innovations 

in training methods, nutrition strategies and technology. Such improvements were clear but small 

for men’s swimming at key races and moderate for men’s and women’s running at key races and 

all races. The unexpected finding was the possibly small slowing down of mean cycling 

performances for all races. This apparent decline in cycling performance may consequence of 

two factors: a consistent bias towards more technical cycle courses, with more elevations and 

sharp curves, justifying why triathletes are taking longer times to complete the cycle stage, and 

a more important role of race tactics (drafting), where athletes are being more strategic to 

guarantee the best position for a run performance. Cycling performance changes for key races 

were unclear presumably because of high race-to-race variability in cycling. Studies in 

performance progression in Ironman (Lepers, 2008), off-road (Lepers & Stapley, 2010) and ultra-

endurance triathlons (Knechtle, et al., 2010) have found plateau in overall performance time 

similar to those observed here. In these other triathlon modalities, different progressions for 

swimming, cycling and running performances were also observed, although they are not all 

comparable to ours. In the only other study of performance progression in Olympic-distance 
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triathlon, Etter et al. (2013) found progression at the Zürich Triathlon for overall and swim times 

comparable to ours but trends for cycling and running opposite to ours. This race is a non-drafting 

race and it was not part of the world triathlon circuits, so their findings may not reflect progression 

of elite performance. 

By extrapolating performance progressions, we have predicted mean performances in key 

races for the 2016 Olympic year. With the possible exception for running, the uncertainty in these 

predictions are too large for using predicted times as futures targets. The uncertainty arises from 

differences environmental and course-related factors from race to race, so it should be possible 

to reduce the uncertainty of the estimates by using a model that estimates the specific effects of 

such factors (e.g., temperature, wetsuit swim, race-course profiles).  

Although men and women have been exposed to the same innovations in training methods 

and nutrition (Lepers, 2008), the gender difference for overall performance has been decreasing. 

This decrease may be explained by an increase of female participation and consequent 

improvement of female competition depth, similar to that in other triathlon races (Knechtle, et al., 

2010; Lepers, et al., 2013; Stiefel, et al., 2012). For comparison between stages, differences in 

mean performance times between genders were smaller for swimming than for cycling and 

running. Similar findings were reported in studies of Ironman and off-road triathlon (Lepers, 2008; 

Lepers, et al., 2013; Lepers & Stapley, 2010). These authors explained gender differences by 

men’s greater muscle mass and higher aerobic capacity but offset to some extent in swimming 

by women’s anthropometry and swimming technique. In our study, cycling is the stage where 

gender differences have been decreasing at the fastest rate, potentially as result of the recent 

bias towards more technical cycling courses which would make athletes’ performances more 

reliant on skill than on physiology. Running, as in previous studies (Etter, et al., 2013; Lepers, 

2008; Lepers, et al., 2013; Lepers & Stapley, 2010), was the stage with the largest gender 

difference comparable to that for Ironman (13%),  Olympic-distance triathlon (17%) and off-road 

(18%).  

We have investigated the importance of each stage by correlating performance ranking in 

swimming, cycling and running stages with overall placing. The highest contribution of running to 

overall performance and the apparent increase in the contribution over the years emphasise the 

importance of running ability for success in triathlon. The highest correlation for running was 

previous reported by Landers et al. (2008). The comparative lower values found for the swimming 

relative to the correlation for cycling can be explained by the fact that such correlations were 

calculated with performance times, and therefore correlations were biased toward the cycle 

(stage with the largest percent of total time). In addition, the lower contribution of swimming and 

cycling to overall performance and the smaller differences between athletes in these stages 

reflect less heterogeneity among swimming and cycling abilities. Surprisingly, cycling and running 

were equally important for junior male athletes, a finding that may be explained by the wider range 

of cycling and running abilities among these athletes (as reported by Landers et al. (2000); 

although Junior and elite athletes raced in distinct conditions). Furthermore, the apparent decline 

of running and increase of cycling contributions to overall performance for these junior athletes 
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may reflect a race strategy different from that of the elites; presumably junior athletes have a 

greater tendency for successful cycling breakaways. 

 

4.5. Conclusions 

Between 2000 and 2012 running performance of elite Olympic-distance triathletes became 

faster, and the contribution of running to overall performance increased. Over these years, little 

changes were observed for swimming, while cycling showed greatest effects of environmental 

and course-related factors. Contributions of swimming and cycling to overall performance have 

been generally negligible, indicating that athletes gain no real advantage in swim or cycle stages 

and that the race is won in the run. On the other hand all the three stages have become important 

for the male junior triathletes. Further studies are required for a better understanding of race 

strategies and differences between junior and elite athletes to develop the talent of the future 

successful elite triathletes 
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CHAPTER 5 

MODELLING PROGRESSION OF COMPETITIVE PERFORMANCE OF AN 
ACADEMY’S SOCCER TEAMS 

This chapter comprises the article published at Journal of Sports Science and Medicine: 

Malcata, R. M., Hopkins, W. G., & Richardson, S. (2012). Modelling the progression of 

competitive performance of an academy's soccer teams. Journal of Sports Science and Medicine, 

11, 533-536. 

Overview 

Progression of a team’s performance is a key issue in competitive sport, but there appears 

to have been no published research on team progression for periods longer than a season. 

Purpose: Report the game-score progression of three teams of a youth talent-development 

academy over five seasons using a novel analytic approach based on generalised mixed 

modelling. Methods: The teams consisted of players born in 1991, 1992 and 1993; they played 

totals of 115, 107 and 122 games in Asia and Europe between 2005 and 2010 against teams 

differing in age by up to 3 years.  Game scores predicted by the mixed model were assumed to 

have an over-dispersed Poisson distribution. The fixed effects in the model estimated an annual 

linear progression for Aspire and for the other teams (grouped as a single opponent) with 

adjustment for home-ground advantage and for a linear effect of age difference between 

competing teams. A random effect allowed for different mean scores for Aspire and opposition 

teams. All effects were estimated as factors via log-transformation and presented as percent 

differences in scores. Inferences were based on the span of 90% confidence intervals in relation 

to thresholds for small factor effects of ×/÷1.10 (+10%/-9%).  Results: Most effects were clear 

only when data for the three teams were combined. Older teams showed a small 27% increase 

in goals scored per year of age difference (90% confidence interval 13 to 42%). Aspire 

experienced a small home-ground advantage of 16% (-5 to 41%), whereas opposition teams 

experienced 31% (7 to 60%) on their own ground. After adjustment for these effects, the Aspire 

teams scored on average 1.5 goals per match, with little change in the five years of their existence, 

whereas their opponents' scores fell from 1.4 in their first year to 1.0 in their last.  The difference 

in progression was trivial over one year (7%, -4 to 20%), small over two years (15%, -8 to 44%), 

but unclear over >2 years. Conclusion:  The generalized mixed model has marginal utility for 

estimating progression of soccer scores, owing to the uncertainty arising from low game scores. 

The estimates are likely to be more precise and useful in sports with higher game scores. 
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5.1. Introduction 

“Has your team improved?” is an important question for coaches and support staff that 

needs to be addressed with appropriate measures of performance in competitions. Match 

analysis can provide measures of various aspects of performance, but the game score itself is 

the criterion for assessing overall progression. Surprisingly, there has been no published research 

using game scores to track progression of team performances over periods longer than a year. 

In previous studies of association football (soccer), game scores have been analysed mainly to 

predict individual game outcomes and probability of a team winning a national league  (Karlis & 

Ntzoufras, 2003, 2009; Lee, 1997; Maher, 1982; Rue & Salvesen, 2000) or a knock-out 

tournament (Dyte & Clarke, 2000; Koning, Koolhaas, Renes, & Ridder, 2003). In these analyses 

game scores were modelled assuming a distribution appropriate for count data, the Poisson or 

over-dispersed Poisson distribution. Important predictors included in previous models were 

parameters describing relative quality of teams. In national leagues, where all teams play each 

other the same number of times, the parameters described each team’s attacking and defensive 

ability (Karlis & Ntzoufras, 2003; Lee, 1997; Maher, 1982; Rue & Salvesen, 2000). For analyses 

of tournaments at World Cups, differences in teams’ abilities were addressed using the FIFA 

ranking system (Dyte & Clarke, 2000). All previous models included a game location effect 

addressing whether a team was playing at home or away. 

The models used in previous studies cannot be applied directly to develop the performance 

progression of soccer teams of youth talent-development academies, for the following reasons. 

First, progression implies tracking the performance in different years, therefore a time variable is 

required in the analyses. Secondly, quality of competitors cannot be addressed using 

attacking/defensive parameters or FIFA world rankings, which are derived from series of games 

between most or all possible pairings of teams. Finally, the models need to include an effect for 

age difference between playing teams, which at an academy level is likely to impact performance.  

In the present study we have applied a generalised mixed linear model to game scores 

with effects accounting for an annual trend of performance, quality of teams, age of competitors 

and home-ground advantage. We investigated the progression of three youth soccer teams from 

the Aspire Academy for Sport Excellence (Doha, Qatar) for the years 2005 to 2010, comparing 

their performance against that of their opponents.  

5.2. Methods 

Data 

The data were official game scores of three Aspire teams and their respective opponents 

over the period 2005 to 2010. Informed consent was not required for approval by our institutional 

ethics committee, because game scores are in the public domain. The three Aspire cohorts 

consisted of players born in 1991, 1992 and 1993. Over the five years of their development 

programme, these cohorts played 115, 107 and 122 games scoring 163, 176 and 188 goals 

against 61, 56 and 60 different opponents, who scored totals of 173, 141 and 174 goals, 

respectively. Matches were contested in Asia and Europe, either as friendly games (when one 
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team is played at home and other away) or at small tournaments (both teams playing away). The 

age difference between Aspire team and their opponents was up to three years.  

Year and season trends 

The analysis presented an opportunity to trial the generalized linear mixed modelling 

procedure, Proc Glimmix, recently available in the Statistical Analysis System (Version 9.2, SAS 

Institute, Cary, NC), (see APPENDIX A). This procedure can model complex repeated-measures 

structures that cannot be accommodated than the established form of the generalized linear 

model known as generalized estimating equations; although these could have used with our data. 

The number of goals scored by each team was modelled as an over-dispersed Poisson 

distribution to allow for the variance of the counts to be different from the mean count (as justified 

in (Nevill, Atkinson, Hughes, & Cooper, 2001)). The fixed effects (and their estimates) were as 

follows: Team (with two levels, estimating a different mean score for Aspire and for the other 

teams grouped as Opposition), Team interacting with the playing season (allowing for a linear 

annual trend in performance for Aspire and Opposition), HomeAway interacted with Team 

(accounting for an advantage when Aspire or Opposition were playing at home), and a linear 

AgeDifference interacted with Team (reflecting  the advantage per year of difference between the 

mean age of the teams, with a separate estimate for Aspire and Opposition). An annual linear 

trend in performance rather than quadratic or higher order trend was deemed the most 

appropriate, based on assessment of the annual mean scores. In the model the estimated mean 

goals were adjusted to a zero age difference and equal numbers of games played at home and 

away. The random effect Team interacting with identity of the team in opposition was included to 

account for opponents’ different abilities and Aspire’s ability against those opponents. 

The analyses were performed individually for each Aspire cohort and for the three cohorts 

combined. In the combined analysis opposition teams with the same name in different years were 

treated as independent teams (i.e., not counted as repeated measurements). 

Modelling was also investigated for team-performance progression within a season. Dates 

of each game were not available, but the temporal order was known and used as the time variable. 

Team performance within-season was predicted with similar Team, HomeAway and 

AgeDifference effects and an interaction between Team and game order to estimate different 

within-season rates of progression for Aspire and Opposition. 

The effects were derived as ratios from the model but expressed as percentage difference. 

Magnitudes of effects were categorised in relation to the default thresholds for counts, with small, 

moderate and large factor effects of ×/÷1.10, ×/÷1.40 and ×/÷2.0 (+10%/-9%, +40%/-29% and 

100%/-50%) (W.G. Hopkins, 2010). An inference about the true (large-sample) value of the effect 

was based on uncertainty in its magnitude: if the 90% confidence interval overlapped small 

positive and negative values, the magnitude was deemed unclear; otherwise, the magnitude was 

deemed to be the observed magnitude (Batterham & Hopkins, 2006). 
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5.3. Results 

Results are presented only for the analysis when games data from the three cohorts (Aspire 

teams born 1991, 1992 and 1993) were combined. The individual analysis for each cohort 

produced mainly unclear effects.  

Age difference had similar effects for Aspire and Opposition, so they were combined into a 

single effect. A one-year difference between playing teams offered a small advantage of 27% 

more goals for the older one (confidence interval 13 to 42%). The age effect was modelled as a 

linear variable with the log of mean number of goals; consequently two- and three-year gaps 

resulted in moderate and large effects of 61% and 105% more goals scored by the older team. 

The Aspire team experienced an advantage of 16% higher scores (-5 to 41%) when playing 

at home, whereas Opposition scores where higher by 31% (7 to 60%) when playing on their own 

ground, both home-ground effects were small. The difference between the two effects was 

unclear (13%, -15 to 49%). 

Figure 11 shows the mean number of goals scored per season by the Aspire and Opposition 

teams over the five years (Season 04/05 through to 09/10). After adjusting for age-difference and 

home-ground effects, Aspire scored on average 1.5 goals per match, with no change over the 

five years. On the other hand, the Opposition’s mean performance fell from 1.4 goals per match 

in their first season to 1.0 goals in the last. At the end of the first year (04/05) the difference 

between the two adjusted means was trivial (5%, -15% to 30%), whereas by the end of 09/10 

Aspire scored moderately more goals than the Opposition (40%, 0 to 96%). The comparison of 

the performance progressions showed a trivial difference between the two teams over one year 

(7%, -4 to 20%), small over two years (15%, -8 to 44%) and unclear for three years (24%, -11 to 

74%) and longer periods.  

Within-season team progression was explored using data from the 15-31games for each 

season of each the three cohorts. When the model specifying home-ground and age-difference 

effects as predictors of mean number of goals was applied, the estimated ratios of progression of 

Aspire vs Opposition had on average an uncertainty of ×/÷4.0. Thus, for observed differences to 

be clear, they would have to be at least very large. When a more simplistic model ignoring home-

ground and age effects was applied, the uncertainty decreased to ×/÷2.7, which still represent 

large uncertainty.  
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Figure 11. Raw mean number of goals scored in each season for the three Aspire cohort and 
their Opposition teams. Lines show adjusted means and 90% confident limits for the Aspire and 
Opposition teams, for the six seasons between 04/05 though to 09/10.  

 

5.4. Discussion 

We have investigated the five-year performance progression of three academy soccer-team 

cohorts using a novel application of generalised linear mixed modelling. The analysis revealed 

substantial effects on performance for an age difference between teams, for game location, and 

for differences in progression of the Aspire and Opposition teams. There were no clear outcomes 

for within-season performance progressions.  

An age difference of one year between opposing teams resulted in a small advantage for the 

older team. This advantage is obviously due to differences in physical maturity, which is highly 

correlated with performance during puberty (Mujika et al., 2009). Even an age difference of less 

than a year produces the well-known relative age-effect in performance, which has been 

demonstrated in soccer (Helsen, Van Winckel, & Williams, 2005) amongst many other sports. 

The same authors suggest that advantage experienced by older players may also reflect 
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psychological maturity and longer exposure to practise and matches, resulting on the 

development of technical and game intelligence skills. Our estimate of the age effect is likely to 

be biased low, because games between teams differing in age are more likely to have been set 

up when the perceived abilities of opposing teams were similar.  

The estimated small advantage for the team playing at home is consistent with previous 

studies, in which the home-ground factor represented approximately 40% higher number of goals 

for the hosting team (Koning, et al., 2003; Lee, 1997). The estimated home-ground effect in our 

study was a little lower, but differences between the two values may be due to the different nature 

of players (professional vs youth). The difference between home advantage experienced by the 

Aspire and Opposition teams was unclear; however, there was an indication of a greater home-

ground effect for the opposition. If the true difference between the home advantages is 

substantial, possible reasons include different climate conditions and different fan support that 

players experienced in the Qatar venue vs the opposition venues.  

Although the analysis for progression for each cohort involved ~100 games, the effects on 

progression were not clear until all three cohorts were included in the analysis–a sample size of 

~300 games. The average performance of Aspire cohorts was fairly constant over the five-year 

period, while the opposition gradually scored less goals. The most obvious explanation for this 

outcome is an improvement of Aspire performance through development of their defensive ability. 

A reduction in the opposition’s attacking ability seems a less likely explanation, but this issue 

could be resolved only by an analysis of scores from games where opposition teams play each 

other.  

The assessment of the magnitude of effects in this study depends on the chosen thresholds. 

The threshold for small was the default 10% change in the score. However to be consistent with 

previous research on solo athletes, the threshold should be the smallest change that would 

increase by 10% the chance of winning against an equally match opponent. Further research is 

needed to establish this change. 

The large uncertainty on the estimates for the within-season progression prevented any 

investigation of teams’ abilities. Indeed, the only useful finding here is that there are insufficient 

games in a season to quantify anything less than large or very large effects. The removal of 

predictors from a model normally increases the uncertainty in the estimates of effects, but in the 

present case collinearity among the predictors and limited sample size resulted in better precision 

with the simpler model. The resulting uncertainty was still unacceptable for any practical 

application. 

The unclear effects on progression arise from the fundamentally noisy nature of scores with 

low counts. Evidently, chance is such a major contributor to soccer outcomes that even an entire 

season of games is insufficient to explore performance progression. Estimates with better 

precision would be produced using performance indicators with higher numbers of counts as 

measures of team performance or effectiveness. Scoring opportunities or score box possessions 

as defined in Tenga et al. (2010) are two examples of such measures for soccer. Modelled 

progressions could also be extended to other performance indicators describing the different 

technical aspects of performance, such as defence, passing, crossing and goal attempts 
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(Oberstone, 2009). Progressions of such performance indicators would then provide evidence 

and help to explain the progression of game scores. A more detailed match analysis using such 

performance indicators was beyond of the scope of this study. 

5.5. Conclusion 

We have presented a novel statistical approach for using objective performance measures 

to investigate progression of a team. The methodology uses the generalized linear mixed model 

to account for the different teams’ abilities via the repeated-measures structure of the data. This 

statistical approach will be particularly useful for analyses of other complex performance data. 

Although limited in its application for soccer scores, the model we have devised should be useful 

for modelling progression of competitive performance in sports where scores are higher. 

  

 71 



 

  

CHAPTER 6 

USING ATHLETES WORLD RANKINGS TO ASSESS PERFORMANCE OF 
COUNTRIES 

This chapter comprises an article accepted for publication in International Journal of Sport 

Physiology and Performance: 

Malcata, R. M., Vandenbogaerde, T. V., & Hopkins, W. G. (2014, in press). Using athletes' 

world rankings for assessing country performance. International Journal of Sport Physiology and 

Performance. 

 

Overview 

There is a need for fair measures of country sport performance that include athletes not 

winning medals. Purpose: To develop a measure of country performance based on athlete ranks 

in the sport of swimming. Methods: Annual top-150 ranks in Olympic pool-swimming events were 

downloaded for 1990 through 2011. For each athlete on a given rank, a score representing the 

athlete’s performance potential was estimated as the proportion of athletes on that rank who ever 

achieved top rank. Country scores were calculated by summing its athletes’ scores over all 32 

events. Reliability and convergent validity were assessed via year-to-year correlations and 

correlations with medal counts at major competitions. The method was also applied to ranks at 

the 2012 Olympics to evaluate country swimming performance. Results: The performance score 

of an athlete on a given rank was closely approximated by 1/rank. This simpler score has two 

practical interpretations: an athlete ranked seventh (for example) has a chance of 1/7 of ever 

achieving top rank; and for purposes of evaluating country performance seven such athletes are 

equivalent to one athlete on the top rank. Country scores obtained by summing 1/rank of its 

athletes had high reliability and validity. This approach produced scores for 168 countries at the 

Olympics, whereas only 17 countries won medals. Conclusions: We have used the sport of 

swimming to develop a fair and inclusive measure representing country performance potential. 

This measure should be suitable for assessing countries in any sports with world rankings or with 

athletes at major competitions.  
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6.1. Introduction 

Assessing a country’s performance in a particular sport is important for monitoring and 

evaluating effects of sports policies and for providing objective feedback to relevant 

administrators, coaches, media and the public. In sports where a country is represented by a 

national team, the measure can be as simple as the team’s ranking at a major international 

competition, such as the Soccer World Cup. In most other sports, medal count at major 

competitions is the usual measure of country performance (HPSNZ, 2012; Nevill, Balmer, & 

Winter, 2009, 2012; Steiler, 2010; UKSport, 2012). This approach has several problems. First, a 

medal count does not reflect a country’s talent base, because it excludes performances of 

athletes not winning medals. Secondly, the count is biased against countries with more talent 

when (as is usually the case) there is a cap on the number of entries from each country. Finally, 

medal counts are low and therefore inherently imprecise: in any one year they provide only an 

approximate assessment of performance. Researchers have also assessed countries by using 

counts (Colwell, 1982) or proportions (V. De Bosscher, Du Bois, & Heyndels, 2012) of athletes 

representing a given country in lists of top-finishing placings at major competitions or in world-

ranking lists, but this approach gives unacceptable equal importance to all such placings or ranks. 

Linear weighting scales have been used to accord more importance to better performances 

(Colwell, 1982; Veerle De Bosscher, De Knop, & Heyndels, 2003), but these scales give 

unrealistically equal importance to a step change in placings or ranks over the whole range (e.g., 

a step from 10th to 9th is equal to the step from 2nd to 1st with a linear scale). 

The purpose of this project was to develop measures for assessing a country’s 

performance depth in a particular sport by fairly including performances of athletes not winning 

medals. We chose swimming as a representative sport because of the availability of data for 

multiple events over many years.  

6.2. Methods 

Data 

Annual top 150 world rankings for all 32 Olympic pool swimming events (excluding open-

water events) were downloaded from www.swimnews.com for 1990 through 2011. Each athlete’s 

rank in a calendar year in this database is determined by the athlete’s best time in any competition 

approved by FINA (Federation Internationale de Natation). Performances in the 32 Olympic pool-

swimming events at the 2012 London Olympics were also downloaded from 

www.london2012.com. Informed Consent was not required for approval by our institutional ethics 

committee, because the top-150 world rankings and Olympic results are in the public domain. 

Weighting approaches 

To derive annual country performance scores, we first determined appropriate values of 

importance (weightings) for each rank, assigned these values to the athletes, then summed the 

values for each country’s athletes. Various approaches were investigated to determine suitable 

weightings, devised to represent the athletes’ performance potential. 
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The first approach involved calculating the proportion (p) of athletes on each rank who ever 

achieved the top rank over the 22 years and 32 events. For example, 65 of the 566 athletes on 

the 10th rank achieved top rank; that is, p = 65/566 = 0.11. Owing to the fact that the total count 

of athletes achieving the top rank for athletes on each of the poor ranks (100th to 150th) was only 

~5, the observed proportions showed too much scatter for a direct estimation of the weighting for 

each rank. We therefore defined a continuous and gradually decreasing relationship using logistic 

regression to model the proportion as a power function of rank: Odds = a·Rankb, where Odds = 

p/(1-p), and a and b were parameters to be estimated for ranks >1. We then converted the 

predicted odds for each rank back to proportions, given by p = Odds/(Odds+1). The weighting of 

each rank was given by the predicted value of p for the rank, except for athletes on Rank 1, where 

the weighting was assigned the value 1. The modelling was performed via Proc Genmod in the 

Statistical Analysis System (Version 9.2, SAS Institute, Cary, NC), (see APPENDIX A for the SAS 

code).  

The same linear logistic modelling was used to investigate two other weightings: proportion of 

athletes ever achieving any top-three rank over the 22-year period, and proportion of athletes 

ever winning a gold medal at a major competition (Olympic Games and World Championships) 

in this period. We also investigated a quadratic logistic model with each of these three approaches 

in an attempt to improve the predicted weightings. Additional analyses were performed by 

applying a logistic model separately to each stroke and distance. The fourth weighting was given 

simply by 1/rank. 

Validity 

To investigate the validity of the measures of country performance derived by each 

approach, country performance scores obtained by summing the weighting for the ranks of its 

athletes were correlated with the number of medals won at Olympic Games or World 

Championships, after log-transformation. Mean correlations over the 22 years of data were 

obtained by averaging Fisher-transformed annual correlations and by back-transforming the 

mean. Validity of individual swimming events could not be investigated, owing to the low medal 

count (three) in any given event in any given year.  

Reliability 

The year-to-year reliability of the log-transformed country scores for each approach was 

analysed for years 2008 through 2011 using a spreadsheet (downloaded from 

newstats.org/xrely.xls) and presented as mean standard errors of measurement (expressed as a 

coefficient of variation) and mean intraclass correlation coefficients for consecutive pairs of years 

(W.G. Hopkins, 2000). These measures of reliability were derived for country scores summed 

over all 32 swimming events and for each event separately. A novel set of thresholds for 

assessing the magnitude of the intraclass correlation coefficient was derived by assuming that 

threshold values for assessing standard deviations are one half those of the modified Cohen scale 

for standardized differences in means (0.2, 0.6, 1.2, 2.0, and 4.0 SD) (W.G. Hopkins, 2010). Since 

the intraclass correlation coefficient is given by SD2/(SD2+error2), substitution of the error term in 
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this formula with half the standardized thresholds results in the following thresholds: >0.99, 

extremely high; 0.99-0.92, very high; 0.92-0.74, high; 0.74-0.50, moderate; 0.50-0.20, low; <0.20, 

very low. If the standard error of measurement is the only source of error in a measure, it follows 

from the formula for the Pearson correlation √(SD2/(SD2+error2)) that the square roots of these 

correlations are thresholds for validity correlations with an error-free criterion: >0.995, extremely 

high; 0.995-0.96, very high; 0.96-0.86, high; 0.86-0.71, moderate; 0.71-0.45, low; <0.45, very low. 

These thresholds were used to interpret the validity correlations, taking into account the fact that 

the criterion medal count is not free of error. 

Application to 2012 London Olympic Games 

To demonstrate the applicability of any of these measures for assessing country 

performance at major competitions, we applied the inverse-rank approach to results from the 

2012 London Olympic Games. We assigned the weighting of 1/rank to the athletes’ ranks at the 

Olympics, and summed these weightings into a country score. We then used these scores to rank 

countries and compared this ranking with country rankings based on medal count.  

6.3.  Results 

Figure 12 shows the observed proportions of athletes on a given world rank who ever 

achieved top rank in the 22-year period with the best fitting logistic regression curve and the 

simpler inverse-rank function. Similar regression curves were obtained for the proportion of 

athletes who ever achieved top-three rank, for the proportion of athletes who ever won a gold 

medal, and for all three models applied to individual strokes and distances (data not shown). 

Figure 13 illustrates the weightings assigned to athlete ranks using the four approaches: inverse-

rank, top-rank, top-three rank and gold-medal. Although the inverse-rank and top-rank 

approaches assigned similar weightings to the first ~10 ranks, the inverse-rank approach 

assigned relatively more weight for ranks >10. The top-three-rank approach produced the highest 

performance scores. 
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Figure 12. Observed proportion of athletes on a given world rank who ever achieved top rank in 
the 22-year period. The curve derived by logistic regression is p = 3.49·Rank-1.46/(1+3.49·Rank-
1.46) (blue line), while the line is the simpler inverse-rank function (green line). 

 

 
Figure 13. Four different weightings used to derive country scores from athletes' ranks based on: 
Inverse Rank (w=1/Rank), Top Rank (weightings given by the above proportion p, for Rank>1), 
Top-3 Rank (based on modelled proportion of athletes on a given world rank who ever achieved 
any top-three rank, w= 11.39·Rank-1.48/(1+11.39·Rank-1.48),  for Rank>3) and Gold Medal 
(based on the modelled proportion of athletes on a given world rank who ever achieved a gold 
medal at major competitions, w= 3.07·Rank-1.14/(1+3.07·Rank-1.14), for Rank>1).   
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Table 9 presents the performance scores, rankings and medal counts for countries ranked in 

the top 20 in 2011 using the inverse-rank approach; performance scores and rankings are also 

shown for the three other approaches. The scores derived from the top-rank, top-three rank and 

gold-medal approaches represent the predicted number of athletes ever achieving top rank, top-

three rank and gold medal respectively. The scores derived from the top-rank and inverse-rank 

approaches appear similar. Indeed, over the 22 years of data the correlation between the rankings 

derived with these two approaches was extremely high (0.996); furthermore, the inverse-rank 

approach predicted the ranks derived with the top-rank approach with a typical uncertainty 

(standard error of estimate) of ~±0.7 of a rank for the lowest and highest ranked countries and 

~±3 ranks for the middle ranked countries.  

As shown in Table 9, USA and China were ranked consistently first and second in 2011. Japan 

was ranked higher than Australia with the inverse-rank and the top-three-rank approaches (Japan 

3rd Australia 4th), but lower with the top-rank and gold-medal approaches (Japan 4th, Australia 

3rd). Japan had twice as many top-150 performances in that year: 692 vs 343 (data not shown in 

the table). 

The list of countries ranked top 20 in 2011 using the inverse-rank approach includes 

countries not winning medals at the World Championships (e.g., Spain and New Zealand) and 

excludes some countries winning medals (e.g., Republic of Korea and Belarus, each winning one 

medal). Overall mean correlations between country scores and medal counts at Olympics and 

World Championships were 0.82 (90% confidence limits, 0.75-0.87), 0.84 (0.78-0.89), 0.80 (0.72-

0.86) and 0.86 (0.80-0.90) for weightings based on the inverse-rank, top-rank, top-three rank and 

gold-medal approaches. Applying quadratic logistic models to estimate proportions improved 

correlations only by ~0.01. The reliability of performance scores for weightings based on the 

inverse-rank approach was very high: a coefficient of variation of 61% (90% confidence interval 

55-68%) and an intraclass correlation coefficient of 0.96 (0.94-0.97). Reliability for single events 

was high: coefficients of variation of 75% ± 18% (mean ± SD for the 32 events) and intraclass 

correlation coefficients of 0.86 ± 0.05. We observed similar reliability of performance scores for 

the other three approaches (data not shown). 

Figure 14 represents the progression in performance scores and rankings since 1990 for 

the three countries with the highest scores in 2011 based on the inverse-rank approach. The USA 

was always ranked first over this period, but the gap between first and second was much smaller 

in 2011. China’s performance fluctuated between ranks of 10 and 2. Japan showed an upward 

trend between 1990 and 1998, but its performance thereafter was relatively stable. 

We also used the inverse-rank approach to assess country performance at the 2012 

London Olympic Games. Table 10 shows the resulting country performance scores and rankings. 

This assessment allowed comparing 168 countries whereas ranking countries based on medal 

count would have allowed comparison of 17 countries only. 
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Figure 14. Progression of country performance scores and rankings from 1990 to 2011 for the 
top-three ranked countries in 2011, USA, China and Japan, by summing the inverse of the world 
ranks for all the swimmers represented in the top 150 for all of the 16 female and 16 male pool 
swimming events. 
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Table 9. Performance scores, rankings and medal counts for countries ranked in the top 20 in 2011 by summing 
the inverse of the world ranks for all the swimmers represented in the top 150 for all of the 16 female and 16 
male pool swimming events. The scores and resulting country rankings based on three other approaches for 
deriving weightings are also shown: the modelled proportion of all athletes on the rank who ever achieved top 
rank (p top 1) and similar modelled proportions for achieving top three (p top 3) and gold medal at Olympics or 
World Championships (p gold). 

  Performance score based on sum of…  Country ranking based on…  No. of 
medals 

Medal 
ranking Country  1/rank p top 1a p top 3b p goldc  1/rank p top 1a p top 3b p goldc  

USA  40.8 37.2 71.9 24.0  1 1 1 1  25 1 

CHN  20.8 19.4 42.6 12.4  2 2 2 2  12 2 

JPN  18.4 15.2 39.6 9.5  3 4 3 4  5 5 

AUS  16.0 15.3 35.2 10.0  4 3 4 3  11 3 

GBR  9.6 8.9 21.8 5.6  5 5 5 5  4 8 

FRA  7.8 7.4 16.8 4.9  6 6 6 6  8 4 

ITA  6.5 5.4 12.9 3.4  7 7 10 8  4 8 

BRA  6.0 5.4 12.5 3.5  8 8 11 7  1 14 

CAN  5.9 5.0 13.3 3.1  9 11 8 12  3 10 

RUS  5.9 5.0 12.9 3.2  10 12 9 11  2 13 

GER  5.4 5.1 13.3 3.2  11 10 7 10  5 5 

NED  5.2 5.2 11.4 3.4  12 9 12 9  5 5 

HUN  4.3 4.3 10.8 2.8  13 13 13 13  3 10 

SWE  4.1 3.7 6.9 2.4  14 14 14 14  1 14 

RSA  2.4 2.0 5.6 1.2  15 17 16 17  1 14 

ESP  2.4 2.0 5.7 1.3  16 16 15 16  0 >21 

DEN  2.1 2.1 4.8 1.4  17 15 17 15  3 10 

POL  1.8 1.6 4.0 1.0  18 18 18 18  1 14 

NZL  1.2 1.1 3.1 0.6  19 20 19 22  0 >21 

NOR  1.1 1.1 1.2 0.7  20 21 25 20  1 14 
aScores based on proportion of athletes ever achieving top rank 
bScores based on proportion of athletes ever achieving any top-three rank 

cScores based on proportion of athletes ever winning a gold medal at Olympic Games or World 
Championships 
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Table 10. Rank-based performance scores, medal count and 
rankings of the top-20 countries for pool-swimming events at 
the 2012 London Olympic Games. The rank-based score was 
obtained by summing the inverse of the ranks of each country’s 
athletes in the 32 events and can be interpreted as gold-medal 
equivalents. 

Country  Rank-based 
score 

Medal 
count  Score 

ranking 
Medal 

ranking 

USA 
 

 27 30  
 1 1 

CHN 
 

 11 10  
 2 3 

AUS 
 

 9.9 10  
 3 3 

FRA 
 

 7.4 7  
 4 5 

JPN 
 

 6.7 11  
 5 2 

GBR 
 

 6.6 3  
 6 8 

HUN 
 

 4.9 2  
 7 10 

RSA 
 

 4.5 3  
 8 8 

NED 
 

 4.5 4  
 9 6 

RUS 
 

 4.3 4  
 10 6 

CAN 
 

 4.0 2  
 11 10 

GER 
 

 3.4 0  
 12 >17 

ITA 
 

 2.7 0  
 13 >17 

BRA 
 

 2.7 2  
 14 10 

ESP 
 

 2.4 2  
 15 10 

DEN 
 

 2.1 0  
 16 >17 

KOR 
 

 1.8 2  
 17 10 

SWE 
 

 1.6 0  
 18 >17 

POL 
 

 1.5 0  
 19 >17 

LTU 
 

 1.4 1 
 

 20 15 
For country abbreviations see www.london2012.com 
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6.4. Discussion 

Using the sport of swimming, we have successfully developed scores to track and compare 

the sport performance of countries. The scores are based on performances of athletes with a top-

150 world rank, and therefore represent depth of performance at the top level. To accommodate 

different notions of how athletes’ performances should be assessed for generating country 

performance scores, we assigned weightings (importance values) to athlete world ranks using 

four approaches. The top-rank, top-three-rank and gold-medal approaches were based on 

proportions of athletes on a given rank ever achieving each of these standards, while the fourth 

approach was based on the inverse of the rank.  

The higher weightings and consequent higher performance scores given by the top-three-

rank approach are consequence of more athletes achieving any of the top three ranks compared 

with only top rank or gold. The gold-medal approach produced the smallest performance scores 

because one year in four has neither World Championships nor Olympic Games. Another 

difference between the approaches apparent in Figure 13 is relatively greater weight accorded to 

ranks better than ~15 with the inverse-rank. These differences in the weightings between 

approaches produced the small differences in country rankings evident in Table 9. For example, 

in spite of Australia winning more medals at the 2011 World Championships compared to Japan 

(11 vs 5), Japan had double the number of performances in the top 150, resulting in an overall 

higher performance score for Japan with the inverse-rank and top-three-rank approaches. 

   

The correlations of country scores with medal counts at major competitions were moderate 

for all approaches. We expected a reasonable correlation between our scores and some measure 

of medal winning, though the highest correlation would not necessarily determine the best 

approach, for the very reason that medal count is not an ideal way to appraise a country’s 

performance depth.  

Our measures are more comprehensive than measures based on medal counts or ranks 

at major competitions: they include performances of each country’s athletes with a top-150 world 

ranking, whereas the country is represented by a limited number of athletes (if any) at major 

championships. Our measures also allow for tracking and comparison of performance depth in 

many more countries than those based on each country's medals. For example, only 21 countries 

won medals at the 2011 Swimming World Championships, whereas our measures have allowed 

assessment of 78 countries. Linear weighting scales that include a wide range of ranks would 

also produce comprehensive measures, but our measures are more appropriate, because they 

capture the greater importance of transitions between better ranks.  

Many sports are already combining ranks at various competitions into athlete scores (tennis 

ATP World Tour, International Triathlon Union Rankings, Official World Golf Rankings)  (rather 

than country scores), and in golf the approach is very similar to our inverse-rank approach. A 

golfer's points in a given competition are calculated by weighting the points awarded to the winner 

by the inverse of the golfer's rank in that competition; the points from each competition are then 

summed to give the golfer's score ("Official World Golf Ranking," 2012). In this way the importance 

of the competition is also taken into account.  
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Our measures were developed to evaluate country performance depth annually. Applying 

weighting in a similar fashion to athletes’ ranks at a major competition and summing these 

weightings into country scores provides an inclusive measure of country performance, reflecting 

the conversion of performance depth into ability of athletes when it really matters.  

There are several limitations to the new measures. First, to produce a performance score, 

a country must have at least one athlete in the list of world rankings. Countries that are not 

represented on the list are all ranked equally last. Secondly, performance scores are less accurate 

for countries with fewer athletes: the score for a country with 10 athletes on the list would be 

expected to change typically by ~10% if it gained or lost another athlete in the following year, 

whereas a country with only one athlete would change by 100%. A third limitation is that the 

country performance measure is only as good as the validity of the athletes' world rankings: 

ranking systems that depend on the number of competitions that athletes have entered (e.g., 

Tennis ATP World Tour list) seem to us inappropriate for applying our method to. For these sports, 

researchers and managers will need to devise a ranking system based purely on athletes' ability, 

similar to that of swimming. A fourth limitation is that discontinuity in country performance scores 

would be shown in any sport that has changed its method for assigning ranks to their athletes. To 

remove the discontinuity, the country score would need to be calculated by working backward 

with the new system or working forward with the old. The measures of performance depth in 

swimming do not include performances in open water swim events. If these need to be included, 

we suggest adding the inverse of the athlete’s rank in major competitions to the country’s 

performance score.  

6.5. Conclusion 

Using rankings of individual athletes we developed scores to track and compare the sport 

performance of countries. Our scores provide a more inclusive, fair and transparent measure of 

performance than current measures based on medal counts. Each country will have to choose 

the most suitable approach according to what is perceived as positive outcome. For the sport of 

swimming, the inverse-rank approach is our preferred method, because it does not require 

complex analyses, and it gives practically the same country ranking as the more sophisticated 

approaches based on logistic models. More importantly, the weight provided by the inverse-rank 

approach has two practical interpretations best understood with an example: an athlete ranked 7 

has a 1-in-7 chance of ever achieving top rank, and this athlete’s performance is worth only one-

seventh that of a top-ranked athlete for assessing the performance of their country. A country’s 

performance score derived by summing these weightings also has a practical interpretation: it 

represents the strength of the country expressed as the equivalent number of top-ranked athletes. 

The measure should be applicable for tracking performance in any sport that has athlete 

world rankings published annually or seasonally. Statistical analyses would be required to define 

the weightings assigned to the ranks in the sport, as we have done for the sport of swimming. It 

is our suspicion that the simple and practical inverse-rank approach will closely approximate the 

logistically modelled top-rank and medal-winning approaches and therefore will be the best choice 

for any sport. The inverse-rank approach could then be applied to assess performance of 
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countries in any or all sports at major events, such as the Olympics. Such overall assessments 

of performance in research and applied settings should be an important component of the 

evaluation of policies relating to the allocation of resources to athletes and their medical, scientific 

and coaching support personnel. 
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CHAPTER 7 

EVALUATING SPORTS PERFORMANCE OVER OLYMPIC CYCLES 
 

This chapter comprises an article that is under embargo, unable to be submitted to a journal 

and to be viewed in this thesis. 
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CHAPTER 8 

DISCUSSION AND CONCLUSION 
 

In this doctoral thesis, I have addressed the question of how to track changes in competitive 

performance. I started by reviewing the topic of variability in competitive performance, because 

estimates of variability provide thresholds for assessing magnitude of performance changes. I 

then developed five analytical linear models to address the research question for five levels of 

performance: athlete, sport, team, sport-specific squad for a country and all Olympic sports of a 

country (Table 15). The different kinds of performances measure–triathlon times, soccer scores, 

world ranking of swimmers, and athletes’ placings at annual main competition–required the 

development of different models to characterise the relationship between performance and the 

time variable.  Mixed linear models were used throughout, following the principle of parsimony. 

Goodness of fit of the models was assessed by inspection of plots of residuals (performance not 

explained by the model) and by evaluating the uncertainty of the estimates of effects on 

performance. In this discussion, I will summarise the key features of each chapter, focusing first 

on the topic of modelling, followed by practical applications and concluding with limitations and 

directions for further research. 

Firstly, the topic of variability of performance was introduced in a systematic review to alert 

the reader that any measure will have random variation between measurements. For competitive 

sport performance this random variation shown by athletes from one competition to the next, also 

known as within-athlete variability, is the irreducible error associated with measurements of 

competitive performance. These estimates of variability are dependent on the sport and reflect 

the contribution of several factors affecting performance additional to the natural physiological 

variability in an athlete ability to produce power. Furthermore, estimates of typical variability 

shown by top athletes from competition to competition define the smallest important/worthwhile 

changes (W.G. Hopkins, et al., 1999) and other magnitude thresholds for assessing performance 

changes (W.G. Hopkins, et al., 2009). From the review of literature, estimates of variability were 

evaluated mainly for performances between competitions within seasons, providing thresholds 

for assessing magnitudes of short-term changes in competitive performance. These thresholds 

are used for assessing performance-enhancing strategies and other factors affecting competitive 

performance. For assessing long-term changes in performance, there was only a small number 

of studies (Bullock & Hopkins, 2009; Fulton, et al., 2009; Smith & Hopkins, 2011; Spencer, et al., 

2014) in which estimates of variability of performance between competitions between seasons 

were reported. For purposes of assessing long-term performance changes (for example, at 

annual world championships) there is a need for estimates of variability of performance for 

competitions between seasons in a large range of sports. 
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Modelling 

Variability of competitive performance shown by athletes from competition to competition 

has been estimated almost invariably with mixed linear models (Bonetti & Hopkins, 2010; Bullock, 

et al., 2009; Fulton, et al., 2009; W.G. Hopkins, 2005; W.G. Hopkins & Hewson, 2001; Nibali, et 

al., 2011; Paton & Hopkins, 2005, 2006; Pyne, et al., 2004; Smith & Hopkins, 2011; Spencer, et 

al., 2014). Fixed effects in the models have been used to adjust for factors affecting mean 

performance (e.g. competition identity, race distance or environmental conditions) so that any 

change in performance between competitions that is the same for all athletes does not contribute 

to the estimates of variability of performance. Random effects have included athlete identity to 

estimate differences between athletes and athlete identity interacted with year to estimate within-

athlete between-year variability. The residual error in such models is the estimate of the typical 

variability shown by athletes from competition to competition.  

In the first of my original research studies, I developed individual career trajectories of elite 

triathletes, investigating performance changes for the swim, cycle and run race stages and total 

times. Performance was modelled as a quadratic function of age and a linear function of calendar 

year in a mixed linear model that accounted for difference in mean race times arising from 

environmental and other course-related factors. Individual trajectories were achieved by 

specifying in mixed linear model clusters for repeated measurements for athletes and for athletes 

within the year. This mixed model included also a random effect for race clusters to allow 

adjustment to an overall mean race time, thereby excluding changes in performance that are the 

same for all athletes as result of environmental conditions and other venue-related factors.  

In this model for triathlon performance, clusters for races provided race performance times 

normalized to an overall mean race time (across the full dataset of races). Because mixed 

modelling allows analysis of datasets with missing values, this normalization of race times is 

performed as if every athlete had competed in every race. It follows that the normalization of race 

times takes into account the ability of the athletes competing. The resulting adjusted mean 

represents an improvement compared with the simple rescaling to the median time used by Alam 

et al. (2008), in which authors did not take into consideration the ability of the athletes in each 

race. Additionally, the quadratic function of age used in our model proved to be sufficient to 

produce well-fitting trajectories over the athletes' careers (Figure 3). Applying the principle of 

parsimony, I did not investigate the non-linear function to describe performance and age 

suggested by Berthelot et al. (2012) and Guillaume et al. (2011). Furthermore, the repeated-

measure structures available for non-linear mixed models in SAS may not have allowed the use 

of random effects to adjust for environmental and other venue-related factors, but further 

investigation of non-linear model for performance analysis is needed. 

In Chapter 4, the model for the analysis of calendar-year trends in triathlon performance was 

similar to that in Chapter 3. With the adjustment for repeated measurements for athletes and 

estimating the extra variation arising from environmental and other external factors, I was able to 

investigate performance trends combining performances from various international races within 

a year, as opposed to previous studies in which only one race was considered (e.g., Ironman 

Hawaii world championship (Lepers, 2008)). The single race approach had been used to minimize 
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changes in performance due to variation on race-course and calibre of athletes competing, which 

the mixed model adjusts for. While having limitations, I assumed a linear relationship of 

performance with calendar year because of easy interpretation; for example, coefficients of the 

model provide rates of improvement (or decline) of the mean performance of the top-16 “place 

getters”. Linear trends have been criticised for their unrealistic predictions in the distant future 

(Reinboud, 2004). For the 13 years of performance I explored higher degree polynomials, but 

over-fitting of the data was evident and therefore deemed unsuitable to provide a general 

understanding of progression of mean top times. I also extrapolated the linear trends four years 

out to estimate predicted mean performances for the year of the coming Olympic Games. 

Predictions had a large uncertainty, limiting the practical application of these estimates of mean 

top times. Uncertainty of predictions ought to be improved using a detailed model to estimate the 

effects of specific environmental and course-related factors on performance, Hollings et al.(2012) 

have estimated such effects for track-and-field events. 

When applying linear models to measures of performance that are different from the usual 

continuous measures of time or distance, one of the varieties of generalised linear models has to 

be used. Chapter 5 and 6 consisted of two examples of such models. In Chapter 5, I modelled 

the football game scores with an over-dispersed Poisson mixed model to compare the number of 

goals scored by Aspire and its opponents to answer the question of success (or failure) of a youth-

talent development programme. The use of an over-dispersed Poisson to model counts such as 

game scores, which are likely to have a variance higher than the mean was first reported by Nevill 

and colleagues (2001). Game scores were modelled as a linear function of calendar year, 

adjusted for age difference between teams and home advantage. In agreement with previous 

research (Helsen, Van Winckel, & Williams, 2005; Koning et al., 2003; Lee, 1997), these two 

factors had clear effects on game performance. Furthermore, the model included clustering of 

game scores when Aspire played “repeatedly” the same team. This clustering accounted for 

different abilities among opposition teams, and consequently, relative ability difference between 

Aspire and each of the opposition teams. Accounting for teams’ abilities was a main challenge in 

this study. Previous research dealt with game scores either in a championship, where all teams 

play each other the same number of times, allowing estimation of each team’s attacking and 

defensive abilities (Karlis & Ntzoufras, 2003, 2009; Lee, 1997; Maher, 1982; Rue & Salvesen, 

2000), or in a World Cup tournament, using FIFA World rankings to adjust for teams’ abilities 

(Dyte & Clarke, 2000; Koning, Koolhaas, Renes, & Ridder, 2003). 

In Chapter 6, I applied a generalised linear model to develop scores for tracking performance 

of a country’s swimming squad. The model was applied to swimming because of the availability 

of a relatively large amount of data in this sport. The generalised linear model was used to perform 

a logistic regression for estimating the proportion of swimmers with a particular world ranking that 

ever achieved the top rank. The proportions were the weightings (importance value) assigned to 

each athlete, which were then summed for each country’s athletes into a country score. It was 

found that the relationship between proportion and rank could be approximated by the simpler 

inverse of the rank function (Figure 13). In this study, I derived and justified weighting scales used 
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to combine individual ranks, as opposed to arbitrary scales presented in previous research to 

combine rankings (Veerle De Bosscher, et al., 2003) or medal colours (Wood, 2012). 

The final research study (Chapter 7) was an application of simple linear regression. I used 

placings at annual main competitions to derive performance metrics for assessing progression of 

performance of individual athletes and teams over an Olympic cycle. The study is an example of 

a simple linear model outperforming a more sophisticated mixed linear model. The mixed model 

failed to produce outcomes when each event was analysed separately because of the limited 

amount of performance data. It produced outcomes when events within a sport were combined, 

but there was a poor fit for some athletes within some events. The poor fit highlights a problem 

with mixed modelling: it finds values of parameters of the model that give the best overall fit of the 

model to the data (by maximizing the predicted likelihood of the data), but the best overall fit does 

not imply the best fit within each cluster of data. This problem appears to become evident when 

there is a limited amount of data with each cluster, as here with the performances for each athlete.  

The use of a linear relationship to describe progression of athlete’s rankings with time in 

Chapter 7, in contrast to the quadratic model presented in Chapter 3 for tracking individual 

triathletes, is justified by the narrower time window and the limited number of performances 

available for each athlete (each athlete will have a maximum of five performances over an 

Olympic cycle). The contribution of a quadratic curvature over this time window (only four years) 

is likely to be negligible, and the use of a linear model allows athletes to be more easily compared 

and categorised in terms of improving, declining or being stable in their performance over the 

Olympic cycle.  

An important feature of Chapter 7 was the use of log transformation. The dependent variable 

in this analysis was the log-transformed placings at annual main competitions. Use of log 

transformation implicitly assigns equal importance to the same factor differences in placings, 

whereas use of the untransformed variable assigns equal importance to absolute differences. For 

example, the difference between second and first is equivalent to the difference between tenth 

and fifth with log transformation, whereas it would be equal to the difference between tenth and 

ninth without transformation. Use of log transformation therefore gives greater and presumably 

more appropriate importance to changes in placings at the top end of the field. 

Log transformation was used in every other research study in this thesis. As highlighted by 

Keene (1995) several features advocate for analysis of log-transformed data. Log transformation 

of triathlon performance times (Chapter 3 and 4) yielded the effects and errors as percent changes 

from the mean performance after back transformation. Log transformation was also applied in 

Chapter 4 for evaluating correlations between triathlon finishing position and rankings in each of 

the triathlon phases, for the reasons discussed in the previous paragraph (equal importance for 

a factor difference). In Chapter 5, a log link function was specified to model the over-dispersed 

Poisson-distributed games scores, presenting effects as percentage differences. The log link 

function is obligatory in generalized linear modelling to transform a count variable into a 

continuous variable (W.G. Hopkins, 2010). Finally, in Chapter 6, I used logistic regression to 

model proportion of athletes with a particular world ranking who ever achieved first rank. In this 

version of the generalized linear model, the dependent variable predicted by the model is the log 
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of the odds (p/(1-p), where p is the proportion). Again, the use of log transformation is obligatory 

to transform a binary outcome variable (1 if achieved top rank, 0 otherwise) into a continuous 

variable (W.G. Hopkins, 2007b).  

 

Practical Applications 

In addition to the theoretical contribution represented by the various models for analysing 

progression of competitive performance, my research also led to information and practical 

applications useful for an applied setting. In Chapter 2, thresholds for assessing magnitudes of 

effects for intervention and other performance enhancing strategies in terms of competitive 

performance are reported and an explanation for deriving the thresholds for lab-based 

performance tests is included. In Chapter 3, career trajectories are themselves an analytical tool 

that allows a visually clear evaluation of athletes’ performance changes and a direct comparison 

between athletes. Deviations of observed values from the modelled trajectory allow assessment 

of the success or failure of new training or other enhancement strategies in competitive 

performance outcomes. Additionally, the analyses of career trajectories of successful athletes 

provide the typical pattern of progression and estimates of age of peak performance (see 

Appendix E for examples). This evidence should assist with the setting of benchmarks for talent 

development programmes and guidance of athlete’s career (Figure 5).  

In Chapter 4, performance trends in triathlon showed improvements in men’s swimming and 

in men’s and women’s running performances. The performance trends represent the changes 

observed for mean top 16 times and reflect the evolution of athletes’ ability and any other 

systematic change that occurs in race courses. For example, if cycling courses are gradually 

being more difficult, with higher number of elevations and more technically demanding, 

performance times will be longer (as the decline of cycling ability of athletes is unlikely).  By 

assessing mean performances in for the three stages of a triathlon race, it was found that for elite 

triathletes, running has increased in importance while cycling has decreased over the last 13 

years; surprisingly the opposite trend was observed for the male juniors. Performance trends and 

importance of each of the race stages provide useful information for planning and preparation of 

triathletes for the Rio Olympics and beyond.  

In these two triathlon studies (Chapter 3 and Chapter 4), predictions for both individual 

performances and mean performance times had limited practical application because of the 

relatively high uncertainty. For example, the estimated improvement of the mean running 

performance of top 16 triathletes over four years was 1.8% with ±1.1% for 90% confidence limits. 

In an applied setting, this information means that the average athlete currently among top 16 

might have to improve as little as ~1% or as much as ~3% to continue in remain contention within 

the top 16 triathletes. This uncertainty arises from two sources of error: random variation in 

environmental conditions or other course-related factors, and the random variation athletes show 

from competition to competition. If information on environmental conditions and other factors (e.g., 

race course distance) is specified for each competition, the model will be able to account for 
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effects of such factors and the predictions will improve. Unfortunately, there is nothing that a 

performance analyst can do about the random variation shown by athletes between competitions. 

In Chapter 5, I was able to answer the question regarding improvement (or decline) of 

competitive football team performance to objectively assess the Aspire youth-talent development 

programme. Although effects of linear trend were unclear over the span of time larger than two 

years; there was a tendency for the Aspire team to increase the number of goals scored and a 

tendency for the opposition to reduce the number of goals. This reduction of opposition goals is 

likely to be related to an improvement of Aspire defensive ability, because they had a reduced 

number of conceded goals. Furthermore, even with a complex model to analyse football scores, 

this measure of performance is too noisy to provide precise outcomes and a practical clear answer 

to coaches and managers. I suggest performance indicators with higher numbers of counts per 

game, as the ones developed by Tenga et al. (2010)  to be used as measures of performance.  

The country scores derived in Chapter 6 are a more inclusive, fair and transparent measure 

of performance than current measures based on medal counts. As stated, the inverse-rank 

approach is the preferred weighting method. These weightings have two practical interpretations 

best understood with an example: an athlete ranked 7 has a 1-in-7 chance of ever achieving top 

rank, and this athlete’s performance is worth only one-seventh that of a top-ranked athlete for 

assessing the performance of their country. A country’s performance score derived by summing 

these weightings also has a practical interpretation: it represents the strength of the country 

expressed as the equivalent number of top-ranked athletes. This measure of country performance 

should be applicable for tracking performance in any sport that has athlete world rankings 

published annually or seasonally. Further statistical analyses will be required to define the 

weightings assigned to the ranks for the particular sport, but the simple and practical inverse-rank 

approach will presumably approximate the weightings derived with other complex approaches 

and therefore will be the best choice for any sport.  

In Chapter 7, performance progressions of individual athletes and teams were, again 

combined to assess progression of sports and countries. The two performance metrics allow 

identification of athletes with greater improvements compared with those of their peers and 

identification of athletes who “choke” (underperform) or perform above expectation at the 

Olympics (see appendix for practical application). These two metrics also supplement information 

provided by medal counts and opinions aimed at identifying successful and unsuccessful sport 

campaigns, thereby enhancing the strategic view and planning for the following Olympic 

quadrennium. 

Limitations and future directions 

Through the work developed in this thesis and review of relevant literature, there are areas 

of research needing improvement and further investigation. I have focussed here on the practical 

implications and applications of research in the applied setting. 

Our review of literature was limited to the topic of within-athletes variability of competitive 

sport performance. Research on estimates of variability of competitive performance should be 

extended to judge-based sports and Estimates of variability of performance between competitions 
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between seasons should also be investigated to provide thresholds for assessing long-term 

changes. Particular attention should be addressed to team sports, because there has been no 

study on variability of team performance, and therefore there is no scale of thresholds for 

assessing magnitude of performance changes in such sports. This research would investigate if 

thresholds of 0.3, 0.9, 1.6, 2.5 and 4.0 of the typical game-to-game variation represent thresholds 

for a small, moderate, large, very large and extremely large changes in team performance. 

Secondly, the approach for modelling performance times of triathletes accounted for effects 

of external factors on performance but it was unable to quantify specifically such effects. The 

effects of the factors affecting performance can be estimated in such models if values of the 

environmental variables in each race are available (e.g., temperature was 20ºC for race X), this 

approach has been used by Hollings et al. (2012) for some of the environmental factors affecting 

track and field athletics performances. Nevertheless, investigation of progression of competitive 

performance of individual athletes should be extended to a wide range of sports. As showed here 

for the sport of triathlon, this objective assessment of performance enables characterization of 

the typical patterns of progression of successful athletes and evaluation of each athlete against 

those benchmarks. Modelling competitive performance should always account for effects of 

external factors affecting performance, because such factors will help explain some of the 

observed changes in performance that are not directly due to changes in ability of athletes. Either 

using a similar method to the one presented here (Chapter 3) or by specifically identifying and 

quantifying effects of such factors (Hollings, et al., 2012), investigation of progression of 

competitive performance should account for effect of external factors, particular in the sports 

where performance is directly affected by environmental and other course-related factors, such 

as in cycling or kayak. Kayak and other sports where athletes compete as a team involve an 

additional challenge, because effect of boat-crews or team composition needs to be considered. 

A third topic of future investigation is a systematic review of the effects of environmental 

and other external factors in performance. With the coming Olympic Games in Rio de Janeiro, 

environmental factors, particularly temperature, have become a focus of attention. It is therefore 

important to establish the effects of such factors on sport performance.  

Fourthly, research on performance of team sport in Chapter 4 was limited because of the 

low number of goals scored per match. The common problem of low counts is present in other 

sports, such as rugby 7’s, with a common low number of counts actions to characterise player’s 

performance. Measures of performance in which chance does not play an important role should 

be identified and used as alternative measure of team or individual player performance. 

The research in Chapter 7 raised my awareness of the importance of progression of 

athletes' competitive performance for assessing sport campaigns. In retrospect, country scores 

as derived in Chapter 6 are limited by the fact that athletes with the same rank are equally 

weighted, regardless of whether the athletes' ranking is improving or declining. There is a sense 

that an athlete showing improvement should be weighted more than an athlete with the opposite 

trend. A combination of methods developed with Chapter 6 and Chapter 7 to develop a method 

that favours improvement  could be a fifth topic for future research. 

 101 



 

  

There was a level of competitive performance that was not investigated in this thesis: 

performance of individual athletes within a team. Such performance could be assessed by 

combining performance indicators into a player score that summarises the contribution of a player 

to team performance. The appropriate model for tracking this score would depend on how the 

score was derived: it may or may not require log transformation or adjustment for team in 

opposition, but a mixed model would likely be the best way to account for repeated measurement.  

Finally, application of non-linear models to competitive performance should be explored for 

analysis of longitudinal trends. Linear models have provided simple and practical assessment of 

competitive performance trends, but all phenomena in nature are fundamentally non-linear. 
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Table 11 Summary of the performance metrics, models, useful findings, limitations and future directions investigated, developed and discussed in this thesis.  

 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 

Title 
    

 Variability of 
competitive 
performance 

Tracking career 
performance of 
successful athletes 

Performance 
progression in elite OD 
triathlona 

Modelling 
progression of an 
academy’s soccer 
team 

Using athletes’ world 
rankings to assess 
performance of 
countries 

Evaluating sports 
performance over 
Olympic cycles 

Level of competitive performance 
    

 Athlete Athlete Sport Team Country squad All country’s Olympic 
sport 

Performance variable 
     

 Time, distance, 
score 

Athlete’s performance 
time 

Top 16 mean 
performance time 

Performance score World rankings Competition placings 

Time window 
     

 Within-year and 
between yearb 

13 years;  
2000-2012 

13 years;  
2000-2012 

5 yearb;  
2000-2012 

22 years; 
1990-2011 

4-year Olympic cycle; 
2004-2012 

Type of model 
     

 Mixed linear model 
with repeated 
measurements for 
athletes 

Mixed linear model 
with repeated 
measurement for 
athletes, cluster for 
race and competition 
level 

Mixed linear model 
with repeated 
measurement for 
athletes and cluster for 
race 

Generalised mixed 
linear model with 
repeated 
measurement for 
clustering Aspire and 
team identities  

Generalised linear 
model 

Linear model 

Transformation 
     

 Log Log Log Log Logit Log 
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Useful Feature 
     

 • Thresholds for 
assessing 
magnitude of 
effects in terms of 
competitive 
performance. 

• Explanation for 
deriving thresholds 
for field/laboratory  
performance tests. 

 

• Quadratic 
trajectories for 
triathletes 
adjusting for 
environmental 
and other external 
factors. 

• Typical patterns 
of progression for 
each triathlon 
stage. 

• Comparison of an 
athlete with 
benchmarks. 

• Linear calendar year 
trends for mean of 
top 16 athletes in 
Triathlon, for key 
races and all 
international races. 

• Calendar year trend 
for gender 
difference in OD 
triathlona 

• Comparison of the 
importance of each 
stage to overall 
performance for 
Elite and Junior 
athletes.  

• Linear calendar 
year trend of 
Aspire and 
Opposition, 
adjusting for 
home-advantage, 
team’s mean age 
and ability of 
teams in 
opposition. 

• Weighting 
(Importance) 
scale for 
individual 
ranking in first-
place getter 
equivalent 

• Country score by 
summing the 
weighted 
rankings of a 
nation athletes. 

• New method for 
ranking 
countries not 
limited to medal 
counts.  

• Use of log 
transformation to 
equally weight factor 
differences between 
ranks (10th to 5th = 
2nd-1st) 

• Two new 
performance metrics: 
rate of progression 
and Olympic effect; 
and percentile ranks 
for direct comparison 
to their peers. 

• Ranking of sports 
and countries by 
combining athletes 
performance metrics. 

Findings      

 • Different factors 
explain difference 
in variability of 
performance. 

• Trajectories for 
running are the 
most comparable 
for overall 
performance. 

• Running is the 
stage where 
athletes show the 
largest 
improvement. 

• Little change for 
overall and cycle 
and improvement 
for swim (only in the 
men) and run 
performances. 

• Gender differences 
decrease with the 
years. 

• Gender difference is 
the smallest in 

• One year 
difference 
provided an 
advantage of 27% 
more goals. 

• Home-advantage 
provided 16-31% 
more goals. 

• Aspire appears to 
have improved 
their performance. 

• 1/Rank 
approach is a 
simpler 
approach to 
quantify the 
importance 
value of athletes’ 
ranks. 

• Chance of an 
athlete getting to 

• Comparing NZ with 
average, NZ athletes 
won relatively more 
medals and 
improvement was as 
good as the average. 

• NZL men’s rowing is 
ranked 11th in 
progression of 
athletes, being 
among the 22% 
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• Lower depth of 
competition for 
women would 
explain the wide 
range of 
trajectories and 
the lower 
predictability 
compared with 
that for men. 

• Age of peak 
performance is 
26-28 years. 

swimming and the 
largest in running. In 
cycling gender 
difference decrease 
the least. 

• Running stage has 
increased 
importance for elite 
men and women. 

• For junior and elite 
men, running and 
cycling appear to 
have opposite 
trends for the two 
age groups. 

• Performance 
indicators that are 
related with 
performance 
outcomes, but 
with higher counts 
per game, should 
be used to 
address 
performance 
changes in soccer 
and other team 
sports, with low 
counts per game. 

the Top-1 is 
given by 1/Rank 

• For a country 
performance, an 
athlete is worth 
1/Rank in terms 
of first-place 
getters. 

countries that 
improved the most. 

• Women’s hockey was 
the NZL sport that 
improved the most, 
with men’s triathlon 
being the sports with 
the worse 
progression in 
comparison to their 
peers. 

Limitation 
     

 • Estimates of CVs 
mainly for 
individual sports. 

• Definition of upper-
ranked athlete 
ambiguous. 

• Publications are 
mainly done by 
one author (W 
Hopkins) and his 
colleagues. 

• Model does not 
estimate the 
effect of specific 
environmental 
and other external 
factors. 

• Limited 
application of race 
predictions. 

• 4-years out 
predictions had a 
too large uncertainty 
to be useful. 

• Correlations for 
Junior races were 
done for one race in 
each year. 

• Low scores per 
match lead to 
unclear effects 
over the 5-years 
period. 

• Country scores 
are as valid as 
the ranking list 
used. 

• Country scores 
are more 
accurate for 
countries with 
several athletes 
in the ranking 
list. 

• Athletes in a 
similar rank are 
equally 
weighted, 

• Limited data points to 
derived performance 
progression for all 
Olympic athletes. 

• Competition placing 
is just a measure of 
comparison of an 
athlete’s performance 
with that of their 
competitors, on the 
day. 

• Uncertainty in 
competition placings 
limits prediction of 
performances. 
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regardless of 
their 
progression. 

• These performance 
metrics are not 
intended to evaluate 
consistent podium 
performance 

Future direction 
     

 • Estimates of 
variability for more 
sports, particular 
for team sports and 
sports with 
subjective scoring. 

• Review of effects 
of environmental 
and other factors 
affecting 
performance. 

• Develop career 
trajectories for a 
wide range of 
sports. 

• Explore non-linear 
models to 
describe the 
relationship 
between 
performance and 
age. 

• Improve precision 
for race 
predictions in 
order to help with 
race strategies. 

• Improve precision of 
estimates by 
providing a more 
detailed model, with 
specific information 
of environmental 
and other course-
related factors. 

• Define 
performance 
indicators that 
measure 
important aspects 
of performance 
and have higher 
counts per match, 
to improve the 
tracking of 
performance 
changes. 

 

• Take into 
consideration 
athletes’ 
progressions, as 
defined in 
Chapter 7, when 
combining the 
weighted ranks 
of athletes of a 
country. 

• Applied progression 
metrics for the log-
transformed world 
rankings (instead of 
competition placings). 

• Extend data to lower 
level competitions, 
which implies 
adapting the model to 
accommodate the 
difference in 
competition levels. 

bOlympic distance Triathlon. 
ayear is equivalent to competitive season. 
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Conclusion 

This PhD represented an opportunity to explore the applicability of linear models to assess 

changes in various kinds of performance outcome using SAS software. I have modelled 

performance times, game scores, world rankings and placings at annual main competitions from 

an individual athlete level to all Olympic sports of a country.  The modalities of linear models, 

including simple regression, generalised linear model, mixed model and generalised mixed linear 

model, appeared to be sufficient and efficient to represent progression of performance.  

The objective assessment of performance achieved with the developed models has 

provided relevant information for the applied setting: characterization of typical patterns of 

progression of successful athletes; evaluation of performance trends in a sport; assessment of a 

youth-talent development programme; quantification of a country’s performance within a sport; 

and, formulation of two measures of performance for assessing sports Olympic campaigns. 

Future research in the area of modelling progression of competitive performance should focus on 

extending assessments to a wider range of sports, equipping coaches, sport scientists and 

managers with objective information for evidence-based decisions. 
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APPENDIX A 

SAS LINEAR MODELS 
 

Below are the examples of the specification of the linear models in the Statistical Analysis 

systems for each of the individual studies. I have also provided a small sample of the dataset and 

variables used in the models. 

Chapter 2- Estimation of variability of surf performance scores 

Ten observations of dataset topathletes. 
Obs    Event    Athlete                    Points    logpoints 
 
137      5      Nunes                         288     566.296 
138      6      Nunes                         288     566.296 
139      7      Nunes                         288     566.296 
140      8      Nunes                         288     566.296 
239      8      Winkler,Lee                   480     617.379 
240      9      Winkler,Lee                   288     566.296 
241     10      Winkler,Lee                  1032     693.925 
243      1      Winter,Russell                480     617.379 
244      2      Winter,Russell                480     617.379 
245      3      Winter,Russell                288     566.296 
 
proc mixed data=topathletes covtest cl alpha=0.1 ; 
class Event Athlete; 
model logpoints=Event/s outp=predtop residual noint ddfm=kr; 
random Athlete/s; 
ods output solutionr=solrtop; 
ods output solutionf=solftop; 
ods output classlevels=clevtop; 
ods output covparms=covtop; 
run; 
 

Chapter 3- Mixed model for individual trajectories for running performance 

Ten observation of dataset allmixed. 
 
            Short kind                                   Year 
Obs Gender  Long  Top Type     RaceId              Year   X  Athlete 
 
5635  Men     0     1  Junior   2007HamburgJunior   2007   7  AlistairBrownlee 
6503  Men     1     1  WCup     2007Rhodes          2007   7  AlistairBrownlee 
6852  Men     1     1  WChamps  2008BeijingOlympics 2008   8  AlistairBrownlee 
7207  Men     1     1  WCup     2008Lisbon          2008   8  AlistairBrownlee 
7856  Men     1     1  WChamps  2009Kitzbuehel      2009   9  AlistairBrownlee 
7905  Men     1     1  WChamps  2009London          2009   9  AlistairBrownlee 
8755  Men     1     1  WChamps  2010London          2010  10  AlistairBrownlee 
8968  Men     1     1  WCup     2010Athlone         2010  10  AlistairBrownlee 
9670  Men     1     1  WChamps  2011Kitzbuehel      2011  11  AlistairBrownlee 
9720  Men     0     1  WChamps  2011Lausanne        2011  11  AlistairBrownlee 
 
 
Obs  LogRun          Run      Age0      Age0Sqr 
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5635 680.128      0:14:59     -6.1485     37.804 
6503 757.199      0:32:23     -6.0444     36.534 
6852 756.372      0:32:07     -5.1803     26.836 
7207 754.433      0:31:30     -5.4536     29.741 
7856 751.534      0:30:36    -4.28546    18.3651 
7905 745.182      0:28:43    -4.18957    17.5525 
8755 750.769      0:30:22    -3.24984    10.5615 
8811 753.476      0:31:12    -3.38409    11.4520 
8968 752.510      0:30:54    -3.30737    10.9387 
9670 752.887      0:31:01    -2.34847     5.5153 
9720 677.651      0:14:37    -2.17587     4.7344 
 
 
proc hpmixed data=allmixed ; 
class Gender ShortLong Venue KindTop Type RaceId Athlete Year; 
Model LogRun=ShortLong*KindTop YearX*KindTop Age0*KindTop 
         Age0Sqr*KindTop /noint s; 
random int Age0 Age0Sqr/subject=Athlete Group=KindTop s CL alpha=0.1 
   type=&variance; 
random Year/subject=Athlete Group=KindTop Cl alpha=0.1 s; 
Random RaceId/ CL alpha=0.1 s; 
Random RaceId*varWCup*Athlete/ CL alpha=0.1  s; 
Random RaceId*varJun*Athlete / CL alpha=0.1  s; 
output out=predmixed pred=Pred stderr=StdErr resid=Resid 

student=StudentResid LCL(blup)=Lower UCL(blup)=Upper 
pred(noblup)=predMean stderr(noblup)=StdErrMean 
LCL(noblup)=LowerMean UCL(noblup)=UpperMean; 

ods output estimates=estmixed; 
ods output solutionr=solrmixed; 
ods output parameterestimates=solfmixed; 
ods output classlevels=clevmixed; 
ods output diffs=lsmdifmixed; 
ods output covparms=covmixed; 
ods output lsmeans=lsmmixed; 
by Gender; 
run; 
ods listing; 
 

Chapter 4- Mixed model for running performance trend 

Ten observation of dataset allmixed2. 
Obs    Gender    Year    YearX     RaceId         Athlete        LogRun       Run   WCup 
 
2608     Men      2012    -4     2012Auckland   JavierGomez       751.425   0:30:34   0  
2609     Men      2012    -4     2012Auckland   JonathanBrownlee  751.425   0:30:34   0 
2624     Men      2012    -4     2012Banyoles   LukasVerzbicas    752.564   0:30:55   1 
2625     Men      2012    -4     2012Banyoles   LaurentVidal      754.009   0:31:22   1 
2656     Men      2012    -4     2012Huatulco   SimonDeCuyper     758.223   0:32:43   1 
2657     Men      2012    -4     2012Huatulco   RyanSissons       758.883   0:32:56   1 
2688     Men      2012    -4     2012Kitzbuehel AlistairBrownlee  749.053   0:29:51   0 
2689     Men      2012    -4     2012Kitzbuehel JonathanBrownlee  751.589   0:30:37   0 
2752     Men      2012    -4     2012SanDiego   JonathanBrownlee  749.554   0:30:00   0 
2753     Men      2012    -4     2012SanDiego   SvenRiederer      749.721   0:30:03   0   
 
proc hpmixed data=allmixed2; 
class Gender RaceId Year Athlete; 
Model LogRun= YearX / s; 
random int Year RaceID*varWCup /subject=Athlete s; 
random RaceId / s; 
Output out=predmean pred=Pred stderr=StdErr resid=Resid 
 student=StudentResid LCL=Lower UCL=Upper 
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 Pred(noblup)=PredMean StdErr(noblup)=StdErrMean 
 LCL(noblup)=LowerMean UCL(noblup)=UpperMean; 
estimate “2000Mean” int 1 YearX -16 /cl alpha=0.1; 
estimate “2001MEan” int 1 YearX -15 /cl alpha=0.1; 
estimate “2002Mean” int 1 YearX -14 /cl alpha=0.1; 
estimate “2003Mean” int 1 YearX -13 /cl alpha=0.1; 
estimate “2004Mean” int 1 YearX -12 /cl alpha=0.1; 
estimate “2005Mean” int 1 YearX -11 /cl alpha=0.1; 
estimate “2006Mean” int 1 YearX -10 /cl alpha=0.1; 
estimate “2007Mean” int 1 YearX -9  /cl alpha=0.1; 
estimate “2008Mean” int 1 YearX -8  /cl alpha=0.1; 
estimate “2009Mean” int 1 YearX -7  /cl alpha=0.1; 
estimate “2010Mean” int 1 YearX -6  /cl alpha=0.1; 
estimate “2011Mean” int 1 YearX -5  /cl alpha=0.1;  
estimate “2012Mean” int 1 YearX -4  /cl alpha=0.1; 
estimate “2013Mean” int 1 YearX -3  /cl alpha=0.1;  
estimate “2014Mean” int 1 YearX -2  /cl alpha=0.1;  
estimate “2015Mean” int 1 YearX -1  /cl alpha=0.1; 
estimate “2016Mean” int 1 YearX 0   /cl alpha=0.1; 
ods output estimates=estmean; 
ods output solutionr=solrmean; 
ods output parameterestimates=solfmean; 
ods output classlevels=clevmean; 
ods output covparms=covmean; 
by gender; 
run; 
 

Chapter 5- Generalised linear mixed model for soccer scores 

Ten observation of dataset dat1. 
                                                                     Age     AgeOpp 
                                                           Home    Aspire     Minus 
  Obs   Intake    Team    TeamOpp      Points   Aspire01   Away   MinusOpp   Aspire 
 
    1   Team91   Aspire   Ajax            2         1       FH        1         0 
    2   Team91   Other    Ajax            2         0       FA        0        -1 
    3   Team91   Other    Al Ain          3         0       FH        0         0 
    4   Team91   Aspire   Al Ain          0         1       FA        0         0 
    5   Team91   Other    Al Ain          0         0       FH        0         0 
    6   Team91   Aspire   Al Ain          0         1       FA        0         0 
    7   Team91   Aspire   Al Arabi        0         1       FH       -1         0 
    8   Team91   Other    Al Arabi        0         0       FA        0         1 
    9   Team91   Other    Al Jazeera      1         0       FH        0         0 
   10   Team91   Aspire   Al Jazeera      4         1       FA        0         0 

 
proc glimmix data=dat1; 
class Intake Team TeamOpp Aspire01 HomeAway; 
model Points=Intake*Team Intake*Team*Year AgeAspireMinusOpp  

AgeOppMinusAspire Team*HomeAway/s link=log dist=Poisson 
noint; 

random int/subject=Intake*Team*TeamOpp s; 
random _residual_/s; 
estimate "AgeAspireMinusOpp" AgeAspireMinusOpp 1/alpha=0.1; 
estimate "AgeOppMinusAspire " AgeOppMinusAspire 1/alpha=0.1; 
estimate "Mean age effect" AgeAspireMinusOpp .5 AgeOppMinusAspire 
.5/alpha=0.1; 
estimate ""; 
estimate "Aspire Home advantage" Team*HomeAway -1 1 0 0/alpha=0.1; 
estimate "Other Home advantage" Team*HomeAway 0 0 -1 1/alpha=0.1; 
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estimate "Other-Aspire Home advantage" Team*HomeAway 1 -1 -1 
1/alpha=0.1; 
estimate "Mean home advantage" Team*HomeAway -1 1 -1 1/alpha=0.1 
divisor=2; 
estimate ""; 
estimate "Aspire 2005" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 5 0 5 
0 5 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate "Aspire 2006" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 6 0 6 
0 6 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate "Aspire 2007" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 7 0 7 
0 7 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate "Aspire 2008" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 8 0 8 
0 8 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate "Aspire 2009" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 9 0 9 
0 9 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate "Aspire 2010" Intake*Team 1 0 1 0 1 0 Intake*Team*Year 10 0 
10 0 10 0 Team*HomeAway 1.5 1.5 0 0/alpha=0.1 divisor=3; 
estimate ""; 
estimate "Aspire 09/05" Intake*Team*Year 4 0 4 0 4 0/alpha=0.1 
divisor=3; 
estimate ""; 
estimate "Other 2005" Intake*Team 0 1 0 1 0 1 Intake*Team*Year 0 5 0 
5 0 5 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate "Other 2006" Intake*Team 0 1 0 1 0 1  Intake*Team*Year 0 6 0 
6 0 6 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate "Other 2007" Intake*Team 0 1 0 1 0 1  Intake*Team*Year 0 7 0 
7 0 7 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate "Other 2008" Intake*Team 0 1 0 1 0 1  Intake*Team*Year 0 8 0 
8 0 8 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate "Other 2009" Intake*Team 0 1 0 1 0 1  Intake*Team*Year 0 9 0 
9 0 9 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate "Other 2010" Intake*Team 0 1 0 1 0 1  Intake*Team*Year 0 10 
0 10 0 10 Team*HomeAway 0 0 1.5 1.5/alpha=0.1 divisor=3; 
estimate ""; 
estimate "Other 09/05" Intake*Team*Year 0 4 0 4 0 4/alpha=0.1 
divisor=3; 
estimate ""; 
estimate "Aspire/Other 2005" Intake*Team 1 -1 1 -1 1 -1 
Intake*Team*Year 5 -5 5 -5 5 -5 
  Team*HomeAway 1.5 1.5 -1.5 -1.5/alpha=0.1 divisor=3; 
estimate "Aspire/Other 2009" Intake*Team 1 -1 1 -1 1 -1 
Intake*Team*Year 9 -9 9 -9 9 -9 
  Team*HomeAway 1.5 1.5 -1.5 -1.5/alpha=0.1 divisor=3; 
estimate ""; 
estimate "Aspire/Other /4y" Intake*Team*Year 4 -4 4 -4 4 -4/alpha=0.1 
divisor=3; 
estimate "Aspire/Other /3y" Intake*Team*Year 3 -3 3 -3 3 -3/alpha=0.1 
divisor=3; 
estimate "Aspire/Other /2y" Intake*Team*Year 2 -2 2 -2 2 -2/alpha=0.1 
divisor=3; 
estimate "Aspire/Other /1y" Intake*Team*Year 1 -1 1 -1 1 -1/alpha=0.1 
divisor=3; 
ods output classlevels=clev; 
ods output solutionf=solf; 
ods output solutionr=solr; 
ods output estimates=est; 
ods output covparms=cov; 
run; 
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Chapter 6- Generalised linear model (logistic regression) for modelling 
proportion 

Ten observation of dataset all_rank2. 

 
Obs    Rank1    Total    LogRank    Gender    Stroke            Distance 
 
1      4        22     0.69315    men       Backstroke           100 
2      3        22     1.09861    men       Backstroke           100 
3      5        23     1.38629    men       Backstroke           100 
4      2        22     1.60944    men       Backstroke           100 
5      0        21     1.79176    men       Backstroke           100 
6      1        22     1.94591    men       Backstroke           100 
7      1        25     2.07944    men       Backstroke           100 
8      1        20     2.19722    men       Backstroke           100 
9      1        22     2.30259    men       Backstroke           10 
10     0        24     2.39790    men       Backstroke           100 
 
proc glimmix data=rank_all2 pconv=1E-5; 
model Rank1X/TotalX=LogRankX /s link=logit dist=bin;  
random _residual_; 
output out=glimmixout_all pred(ilink)=PredictedAll 

resid(ilink)=ResidualAll; 
ods output covparms=cov_all; 
ods output parameterestimates=parmest_all; 
ods output lsmeans=lsm_all; 
ods output diffs=lsmdiff_all; 
ods output solutionr=solr_all; 
ods output classlevels=clev_all; 
ods output estimates=est_all; 
run; 
ods listing; 

 

Chapter 7- Linear regression of individual athletes placings at annual main 
competitions 

Ten observation of dataset data5. 
 
Obs    OlyCycle   Gender   Sport      Event    Person_Team         LogRank    Rank   
Yeardif 
56014     2012    Men      Sailing    49er     Burling/Tuke       69.315    2     0.00000 
56015     2012    Men      Sailing    49er     Burling/Tuke       69.315    2    -0.23770 
56016     2012    Men      Sailing    49er     Burling/Tuke       69.315    2    -0.63945 
56017     2012    Men      Sailing    49er     Burling/Tuke       283.321   17   -2.57918 
56018     2012    Men      Sailing    49er     Burling/Tuke       325.810   26   -3.05589 
56027     2012    Men      Sailing    49er     Chekrygin/Russu    407.754   59   -0.23770 
56028     2012    Men      Sailing    49er     Chekrygin/Russu    438.203   80   -3.05589 
56037     2012    Men      Sailing    49er     D'Ortoli/Delpech   207.944   8    -0.23770 
56038     2012    Men      Sailing    49er     D'Ortoli/Delpech   336.730   29   -2.57918 
56039     2012    Men      Sailing    49er     D'Ortoli/Delpech   248.491   12   -3.05589 
56043     2012    Men      Sailing    49er     D.Evans/& 
 
proc reg data=data5; 
model LogRank=Yeardif; 
by sport Gender Event Person_Team OlyCycle; 
Ods output parameterestimates=logregression; 
run;  
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APPENDIX B 
Oral presentation presented at European College of Sport Science, in Barcelona, Spain, 2013. 
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APPENDIX C 
Oral presentation presented at European College of Sport Science, in Liverpool, United Kingdom, 
2011. 
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APPENDIX D 
Poster presented at European College of Sport Science, in Bruges, Belgium, 2012. 
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APPENDIX E 

Here, I present a section of the report provided to Triathlon NZ to guide the use of an excel-

based application for analysis of triathletes running performance. The findings were derived using 

similar methods as the one in Chapter 3. Sections on the performance trends and predictions for 

Rio were deleted at the request of Triathlon NZ. 

TRIATHLON TRACKING TO 2016: RUN PERFORMANCE 
Simon Pearson, Rita Malcata 

Overview 

This document presents the progression of run performance in triathlon from two 

perspectives: an overview of elite level performance trends as a whole and also examining 

individual athlete development. We initially chose to analyse the run performance in isolation as 

it has the highest correlation with the overall performance (table below), however similar 

performance trajectories can be developed for the swim and bike (although the effect of pack 

riding may well confound the usefulness of this).  

 

Table 1. Mean correlations (with 90% confidence limits) between performance in each 

individual leg and overall race performance 

Swim Bike Run 

0.52 (0.28-0.70) 0.77 (0.53-0.90) 0.87 (0.74-0.94) 

 

Findings presented in this document are based on analysis of run split data from 449 

international triathlon races (226 men, 223 women) from 2000 to 2012. These were comprised of 

World Cup, World (Championship) Series, World Championships (including Junior and U23 

races) and Olympic level races. 

Because of the confounding nature of triathlon courses on run times (some courses and/or 

conditions leading to faster or slower run times), these have been corrected to a “standard” time 

scale by using a combination of average time and strength of field to adjust out (or at least 

minimise) the effect of course characteristics on run times. Results are currently presented as 

corrected 10km run times, however could be adjusted to other units (e.g. speed, 5km time) as 

needed. 

Run performance progression (Individual) 

A second area of analysis is how individual NZ athletes are tracking in terms of their run 

performance, in which there are two key elements for consideration: 

1. Current gap to the podium and projected rate of progression required to podium in 2016 
(or another pinnacle event), as summarised in the year progression above. 
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2. Age-related development: what is an athlete’s current rate of run performance 
progression, and how much more can they be expected to improve, based on 
retrospective data. This is particularly relevant for development athletes, as it looks to 
address whether they are “on track” based on their current age, and current rate of 
progression. 

 
Figure 1. Individual trajectories for the top 3 (yellow), top 16 (blue) and NZ athletes who 

do not classified in the previous groups (black). 

 

This second point has been addressed by analysing the age-related run performance 

progressions of any athlete who has had a top 16 finish at a pinnacle event in the last Olympic 

cycle, starting from and including the Beijing 2008 Olympics. These criteria were selected as it 

enabled us to benchmark against a reasonably large group of recent elite performers and create 

a “typical” rate of age-related progression in run performance for those that make it to a high level 

of international success. While it is acknowledged that 16th can be a long way from a medal 

performance, this was considered to be the best approach based on: 

• Relatively small difference between the average run progression values for top 3 vs 10 
vs 16. 

• Much better certainty around the model with greater numbers (top 3 created a very noisy 
model) 

• A certain alignment with current funding criteria (medals being the primary aim but top 16 
still acknowledged as a notable level of international performance). 

• The perspective that because of individual characteristics there can always be exceptions 
and as such this type of benchmarking should be used as a filter rather than an absolute 
criterion in athlete evaluation. Therefore a slightly more general model (with better 
certainty) still fulfils this need. 

Below (Figure 2) are a couple of examples using the models for men as a visual 

assessment tool of how an athlete is progressing based on age. In both cases these examples 

compare an established athlete who has medalled at a pinnacle event with a developing athlete.  
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Figure 2. Plotting of individual athletes’ progression in run performance against each other 

(red, green lines) and the typical progression (mean, 90% range) of a pinnacle top 16 athlete 

(blue line and shading). 

 

An additional way in which this data can be used is in getting an idea of “check points” in 

term of results. Table 2 outlines the average age at which a (future) pinnacle medallist attained 

notable finishing positions in lower level races. While the World (Championship) Series data is 

not particularly useful at this stage, what this shows is that typically a successful athlete will have 

achieved a World Cup podium by around the age of 23 (men) or 25 (women) and their first 

Pinnacle event podium will occur around 3 years later. (Note that there are expected levels of 

variation around these values, this is just providing a basic snapshot). 

Table 2. Average ages at which a pinnacle event medallist obtained their first top 16 and 

top 3 results at different levels of racing. 

 Pinnacle World Series* World Cup  
 Top 3 / 16 Top 3 / 16 Top 3 / 16 Peak Age 

Men 25.6 / 25.0 26.9 / 26.9 23.0 / 22.6 28 

Women 27.9 / 27.9 27.8 / 27.8 25.1 / 24.9 27 

*Note: World Series results will be skewed due to only being in existence for the last four 

year. 
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APPENDIX F 

Initial section of report presented to Swimming NZL and board of HPSNZ for assessing 

performance of New Zealand swimming team at the 2012 London Olympic Games. The remaining 

section of the report was not relevant for this appendix because they included work not performed 

by me. 

LONDON OLYMPICS 2012: NZ SWIM PERFORMANCE REPORT  

Tom Vandenbogaerde, Sian Allen, Rita Malcata, Will Hopkins 

High Performance Sport New Zealand, Auckland, New Zealand and Sport Performance 

Research Institute of New Zealand, AUT University, Auckland, New Zealand 

 

We first present an analysis of the performance of New Zealand in Swimming, using a 

novel method developed by Will Hopkins, Rita Malcata and Tom Vandenbogaerde. In many sports 

such as Swimming, medal count at major competitions is the usual measure of country 

performance. This approach has several problems. First, a medal count does not reflect a 

country’s talent base, because it excludes performances of athletes not winning medals. 

Secondly, the count is biased against countries with more talent when (as is usually the case) 

there is a cap on the number of entries from each country. Finally, medal counts are low and 

therefore inherently imprecise: in any one year they provide only an approximate assessment of 

performance. The novel method, which solves these problems, combines world rankings of 

individual athletes into a country score by summing the inverse of the athletes' ranks. The 

resulting score is equivalent to the top-rank or gold-medal capability of the country. A paper on 

this method has been submitted for publication in Medicine and Science in Sports and Exercise. 

Please contact Rita or Tom for more info.  

We then show performance times of the New Zealand Olympic Team swimmers at the 

London Olympics and other major competitions 2010 through 2012. We’ve compared 

performance progression rates between trials and Olympics, personal best and Olympics, and 

heats vs semi-finals vs finals, for New Zealand, Great Britain, Australia, USA, China and Japan. 

We’ve also included comparisons in number and percentage of total number of performances in 

individual events that had improved between competitions and from heats to semi-finals and/or 

finals at the Olympics.  

We then present performance trajectories of our London Olympic Team swimmers that 

qualified for an individual event, and trajectories of medal winners and of the top 16 in the 

respective event. These modelled trajectories include only best performances each year and do 

sometimes not reflect performance at the major competition. Nevertheless, we believe these 

trajectories are a useful tool to track performance progression. We also provide some statistics 

on the mean age of medalists, finalist and semi-finalists, and on times required to win medals, 

make finals and make semi-finals.  
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Finally, we report some general comments and observations, and we’ve included additional 

figures and tables in addenda.   

Performance of New Zealand in Swimming 

Table 1 presents our top-rank performance scores, rankings and medal counts for 

countries ranked in the top 20 in 2012. The list includes countries not winning medals at the 

London Olympics (e.g., Italy, Germany and New Zealand) and excludes some countries winning 

medals (e.g., Tunisia and Lithuania, each winning one medal, and Belarus, winning two medals).  

 

Table 1. Top-rank performance scores, rankings and 
medal counts for countries ranked in the top 20 in 
2012. Top-rank scores are the sum of the inverse of 
the world ranks for each country's swimmers 
represented in the top 150 for all 16 female and 16 
male pool swimming events.  

Country  Top-rank 
Score  Score 

Ranking  Medal 
count 

Medal 
Ranking 

USA  39.6  1  30 1 
CHN  16.6  2  10 3 
AUS  16.3  3  10 3 
JPN  13.4  4  11 2 
GBR  11.2  5  3 8 
FRA  10.2  6  7 5 
RUS  6.3  7  4 6 
CAN  6.0  8  2 10 
ITA  5.2  9  . . 
GER  5.2  10  . . 
HUN  5.2  11  2 10 
NED  4.9  12  4 6 
RSA  4.7  13  3 8 
BRA  4.2  14  2 10 
ESP  3.1  15  2 10 
SWE  3.1  16  . . 
DEN  2.3  17  . . 
POL  1.7  18  . . 
KOR  1.7  19  2 10 
NZL  1.6  20  . . 

 
Figure1 represents the progression in performance scores and rankings since 1990 for 

New Zealand and the four countries with the highest scores in 2012 based on our inverse-rank 

method. The USA was always ranked first over this period. China’s performance fluctuated 

between ranks of 10 and 2. Japan showed an upward trend between 1990 and 1998; its 

performance stabilized afterwards (rank 2, 3 or 4). Figure 2 has been included to show the ranking 

of New Zealand on a more appropriate scale. Our country has been ranked between 14th and 
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28th over the last 23 years. It was ranked 20 in 2008, 21 in 2009, 19 in 2010, 19 in 2011 and 20 

in 2012. 

 
Figure 1. Progression of country scores from 1990 to 2012 for New Zealand and the top-five 

ranked countries in 2012, USA, China, Australia, Japan and Great Britain, by summing the inverse 

of the world ranks for all the swimmers represented in the top 150 for all of the 16 female and 16 

male pool swimming events. 

 

 
Figure 2. Progression of New Zealand ranking from 1990 to 2012, according to the performance 

score calculated by summing the inverse of the world ranks for all the 16 female and 16 male pool 

swimming events.  
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Appendix G 

EXCEL APPLICATION TO ASSESS PROGRESSION OF PERFORMANCE 
OVER AN OLYMPIC CYCLE 

Chapter 7 and its excel application are under embargo. 
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