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Abstract

The availability of temporal and spatiotemporal data is increasing, and

the use of traditional statistical techniques to deal with such data is insuf-

�cient. Novel methods that are capable of adapting to changing patterns

in time-variant spatiotemporal data need to be developed. To achieve this

objective, the thesis proposes three di�erent methods to deal with various

types of data and employ distinct approaches to tackle common problems

faced in spatiotemporal data mining.

The �rst method deals with multiple time series and presents a develop-

ment of a generic framework to extract knowledge in the form of temporal

rules. The main component is a modi�ed association rule mining algorithm

that also works with time dimension, producing rules in the form of A T⇒ B.

As part of the research, a discretisation technique inspired by concept drift

detection is also proposed. The framework was then applied to a dataset that

tracks the number of aphids caught in traps along with weather variables over

almost twenty years in the Lincoln region in Canterbury, New Zealand.

The second method deals with building local models for a time-step ahead

spatial prediction problem. Taking advantage of the locality-preserving prop-

erty of the space-�lling Hilbert curve, the method is able to work with exist-

ing concept drift detection algorithms to automatically determine where and

when in the spatiotemporal landscape that patterns are changing. The frame-

work was tested on the earthquake catalogue data around the Christchurch

region. The empirical results reveal that the local models improved the pre-

diction accuracy of up to 9% on one of the tests when compared to a standard

incremental model building approach based on a �xed size sliding window

scheme.

The third method employs a Spiking Neural Network (SNN)-based system
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called NeuCube to build an early event prediction system. The system was

trained to di�erentiate the seismicity readings obtained from spatially scat-

tered seismograms around Canterbury both before large earthquakes happen

and periods of low seismicity between 2010 and 2016. The system was tested

to examine whether NeuCube could learn from complex data and demon-

strate a capability of predicting large earthquakes with a reasonable window

of time. The results from this scheme are promising as NeuCube could pre-

dict major seismic events with a much higher true positive rate (0.91) while

keeping the false positive rate signi�cantly lower (0.08) when compared to

other prediction algorithms.
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Chapter 1

Introduction

1.1 Background and Motivation

The world is seeing revolutionary advances and price reduction of technolo-

gies for the collection of temporal, spatial, and spatiotemporal data. This

includes but not limited to remote sensing satellites, smartphones, sensor

networks, and multitudes of other devices that facilitate the collection of

data that can be referenced in space and time. As the number, volume, and

resolution of spatiotemporal datasets increase, researchers from various disci-

plines are starting to look into data mining as the tool of choice for analysing

this breed of data as it is becoming more apparent that the use traditional

statistical methods is sometimes insu�cient.

This type of data often conceal interesting information and rich interac-

tions between space-time dimensions which conventional systems and classi-

cal data mining techniques are unable to discover or simply treat just like any

other variable or feature. The �eld of spatiotemporal data mining (STDM)

emerged out of the need to create e�ective and e�cient techniques that are

able to deal with the intricacy and complexity of spatiotemporal datasets to

discover meaningful analyses and knowledge [Yao 2003].

One of the domain areas in which STDM is gaining traction is in the

�elds of geospatial and ecological modelling, which increasingly have to deal

with high-volume data collected over vast spatial range and over long periods

of time [Han 2002]. Researchers in these �elds mainly use statistical tech-
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niques to analyse the relationships between the variables in a data set. These

techniques are typically parametric and are unable to handle the complex-

ities embedded in high-speed, high-volume, and highly-volatile spatiotem-

poral data. This is in contrast to data mining methods which have been

noted as being capable to work mostly without any parametric assumption

about the data and are �exible enough to be used in various ecological and

geospatial applications [Hochachka 2007].

These emerging applications involve great data analysis challenges that

also represent new opportunities for data mining research. The development

and applications of STDM methods to mine biomedical, telecommunication,

geospatial, and climate data are presently a very active research area. How-

ever, in light of the tremendous amount of fast growing and sophisticated

types of data and comprehensive analysis tasks, the �eld of STDM may well

be only in its infancy. Research is still needed to develop automated, scalable,

integrated, and reliable data mining systems and tools.

This thesis is an exploration of various data mining paradigms and tech-

niques to deal with problems commonly encountered in STDM. While the

proposed methods encompass a wide range of approaches and tackle di�er-

ent sets of problems, there is a common theme and spirit that these methods

have. They work in an adaptive manner and strive toward the interpretabil-

ity of the models for the sake of knowledge discovery. The development of

systems that are explainable adds to the ability of human experts to discover

new knowledge. This transparency has the potential to make data mining

the key tool for not only making predictions and forecasts, but also for a

better understanding of the problem at hand.

The proposed methods were tested and applied on real-world geospatial

and ecological modelling datasets. The experiments exemplify the various

types of data with time and/or space referenced in it. The examples con-

cerning earthquake include both numerical aftershock analysis helpful for
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post-event disaster management and event prediction useful for pre-event

warning systems. These problem domains are very suitable and opportune

�elds to run STDM experiments on, and are a treasure trove of knowledge

and information that could lead to improving life quality and even saving

lives. For instance, one of the case studies presented in this thesis was aimed

to discover human-readable temporal patterns that precede pest outbreaks,

which are a big threat to both the agriculture industry and also the frag-

ile and highly-regarded biosecurity of New Zealand [Teulon 2002]. The other

case studies revolve around the earthquakes of the city of Christchurch, where

seismic related disasters since 2010 have killed over 180 people and up un-

til 2016, have cost the nation about forty billion dollars to rebuild the city

[Wood 2016].

1.2 Objectives

In line with the problems expounded in the previous section regarding STDM,

this PhD study has the main objectives of:

1. Developing novel methods for data analysis which take into account

temporal, spatial, and spatiotemporal dimensions and have the capa-

bility to identify, adapt, and learn as new observations or concepts

become available;

2. Investigating further the utilisation of new computing paradigms based

on Spiking Neural Networks (SNN) in working with spatiotemporal

dataset and its potential to be used in hazardous event prediction.
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1.3 Contributions

Throughout the thesis, several contributions have been made both to the

�eld of machine learning and the applications in their respective scienti�c

domains. These contributions can be listed as follows:

• A generic framework for extracting temporal association rules from

multiple time-series is presented. The method works by �rst discretis-

ing the time-series data, generating the frequent itemsets, and then

using a modi�ed Apriori algorithm to mine the rules. Finally, some

rules selection criteria are applied to obtain the best rules.

• As a part of the rule extraction research, a novel binary discretisation

algorithm is also proposed. The algorithm takes into account changes

that occur between two consecutive sliding windows in order to discre-

tise real value into symbolic representation.

• A method to build local models that can be used with spatiotemporal

data is proposed. The method detects concept drifts in space and time

by combining the Hilbert curve and concept-drift detector. It identi�es

local regions that are homogeneous and this information is used to build

local models.

• An experimental study of the adaptive local methods with aftershock

modelling of the area around the city of Christchurch is discussed.

• A preliminary research on the application of an SNN-based spatiotem-

poral data machine called NeuCube to analyse seismic data for earth-

quake prediction is presented. To the best of my knowledge, this ap-

proach of analysing seismic waveforms has not been done before.
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1.4 Thesis Structure

In departure from the usual manner of presenting theoretical frameworks and

existing body of knowledge, this thesis does not have a dedicated chapter for

literature reviews. Instead, each individual chapter starts with sections that

lay out the relevant foundational concepts along with a review of previous

and contemporary research pertinent to the subject matter. This thesis is

organised into four major parts:

• Chapter 2 presents the framework that can be used to discover temporal

association rules from multivariate time-series. It is presented along

with a case study of the methods on an ecological dataset.

• Chapter 3 and 4 discuss the technique devised to building adaptive

predictive local models for spatiotemporal data. An experiment with

an interesting dataset of aftershocks which exhibits concept drifts in

space and time is discussed in detail.

• Chapter 5 and 6 describe a new neuromorphic computing paradigm

based on Spiking Neural Networks (SNN) called NeuCube which na-

tively handles spatiotemporal data as well as a feasibility study of the

application of NeuCube for hazardous event prediction through seismic

data analysis.

• Chapter 7 concludes and summarises the thesis, discusses its �ndings

and contributions, points out limitations of the current works, and also

outlines directions for future research.

1.5 Publications

Throughout the completion of the PhD study, the following papers have been

published:
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• Hartono, R. N., Pears, R., Kasabov, N., & Worner, S. P. (2014, July).

Extracting Temporal Knowledge from Time Series: A Case Study in

Ecological Data. In 2014 International Joint Conference on Neural

Networks (IJCNN) (pp. 4237-4243). IEEE.

• Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci,

E., Othman, M., Doborjeh M.G., Murli, N., Hartono, R., ... & Espinosa-

Ramos, J. I. (2016). Evolving Spatio-temporal Data Machines Based

on The NeuCube Neuromorphic Framework: Design Methodology and

Selected Applications. Neural Networks, 78, 1-14.

• P. Bose, N. K. Kasabov, L. Bruzzone and R. N. Hartono (2016). Spik-

ing Neural Networks for Crop Yield Estimation Based on Spatiotempo-

ral Analysis of Image Time Series. In IEEE Transactions on Geoscience

and Remote Sensing, vol. 54, no. 11, pp. 6563-6573

In addition, there were two poster papers:

• McNabb, C., Hartono, R., McIlwain, M., Anderson, V., Kasabov,

N., Kydd, R., & Russell, B. (2014). Classi�cation of People with

Treatment-Resistant and Ultra-Treatment-Resistant Schizophrenia us-

ing Personalised Computer Modelling and EEG Data. Schizophrenia

Research, 153, S197.

• Russell, B., Hartono, R., McIlwain, M., Anderson, V., Kasabov, N.,

Kydd, R., & McNabb, C. (2014). Using Personalised Computer Mod-

elling to Classify People With Treatment-Resistant or Ultra-Treatment-

Resistant Schizophrenia Based on Cognitive Measures. Schizophrenia

Research, 153, S361.

And one book chapter:
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• Hartono, R. N., Pears, R., Kasabov, N., & Worner, S. P. (2015). Se-

quential Rule Extraction from Ecological Time Series Data. In: Beres-

ford RM, Froud KJ, Kean JM, Worner SP ed. The plant protection

data tool box. (pp. 161-166). New Zealand Plant Protection Society.



Chapter 2

Rule Discovery from Multiple

Time-series Stream

2.1 Introduction

This chapter presents a generic framework and methods for mining temporal

association rules from multiple time-series data along with its application to

ecological data [Hartono 2014]. First, time-series inputs are transformed into

symbolic representation by means of discretisation. Once discretised, itemset

candidate can be generated. Rules are then generated with a modi�ed apriori

algorithm according to a speci�ed minimum con�dence and support value.

Finally, rule selection criteria are further applied to acquire the best rules. As

a part of this research, a method for discretisation of numerical data based

on concept-drift detection was developed.

Our empirical study on the aphids dataset revealed that high con�dence

rules that predict an impending pest outbreak can be identi�ed. The simple,

actionable rules give growers an adequate window of time to take preventive

action. The knowledge encapsulated by such rules could not be deduced

by simple visualization methods due to the complex inter-relationships be-

tween the variables, thus reinforcing the need for application of rule mining

methods.

This chapter is organised in the following manner:

• A review of the fundamental concepts related to the research is pre-
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sented in Section 2.2, which includes the topics of Time-series discreti-

sation and Association Rule Mining.

• Section 2.5 introduces the proposed methodology and describes the

constituent algorithms and procedures in detail.

• In Section 2.6, the application of the technique on a real-world ecolog-

ical dataset including the e�ects of the parameters and the extracted

results is discussed.

2.2 Time-series Data Mining

Time-series data is ubiquitous in various scienti�c �elds, and analysing time-

series data is an active area of research [Fu 2011]. Although intensely re-

searched from regression and prediction perspectives, relatively less research

has focused on discovery of knowledge in the form of sequential associative

rules. In an ecological context, knowledge of the environmental factors as-

sociated with a pest invasion assumes equal if not more importance than

numerical predictions as it enables end users to make timely and informed

decisions on when to put in place suitable pest control measures in a proba-

bilistic manner.

2.3 Time-series Discretisation

In general, knowledge extraction from temporal data in the form of sequential

rules from time series requires a pre-processing step to transform numerical

data into symbolic form suitable for application of rule mining methods.

One of the time-series in this study is especially interesting due to the highly

skewed nature of species count time-series. This led to the development a
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new discretisation method that uses the idea of concept-drift detection which

does not assume that the underlying data follows a particular distribution.

The discretisation of time series data is a way to transform and e�ciently

represent sequence of numbers into symbolic format, which is easier to work

with because of the bounded dimensionality. As with most problems in

computer science, the suitable choice of information representation greatly

a�ects the general performance of time series data mining algorithms. This

data transformation phase has been a very important procedure in data

mining simply because a lot of machine learning algorithms work only or

much better with discrete and �nite problem space [Dougherty 1995].

In order to give a general context about time-series discretisation, a de�ni-

tion is appropriate [Hartemink 2001]: a discretisation of a real-valued vector

v = (v1, ..., vN) is an integer-valued vector d = (d1, ..., dN) with the following

properties:

1. Each element of d is in the set {0, 1, ..., D − 1} for some (usually small)

positive integer D, called the degree of the discretisation.

2. For all 1 ≤ i, j ≤ N , we have di ≤ dj if vi ≤ vj.

There is an enormous wealth of existing algorithms and data structures

that allow the e�cient manipulations of strings from the �elds of natural

language processing, information retrieval and bioinformatics. With the help

of an e�ective symbolic representation of numerical data, these methods can

also work with time-series research and has promising potential for scientists

to explore new ways of time-series data mining.

There are multiple approaches that one can take to discretise time-series

data. In [Das 1998], a clustering technique is used to transform the time

series into symbols representing the geometrical shape of the time-series.

In [Wan 2007], a clustering method based on the concept of Partial K-

Completeness and Interestingness is used on Hydrological data. Mörchen and
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Ultsch proposed a new quality score to measure unsupervised discretisation

of time series, by taking the temporal information into account and searching

for persistence, argued as more suitable for knowledge discovery purposes,

and o�ered a discretisation algorithm called Persist [Mörchen 2005].

2.3.1 Symbolic Aggregate approXimation (SAX)

One of the most widely used discretisation methods for time series is the Sym-

bolic Aggregate approXimation (SAX). The SAX method uses the Gaussian

distribution to discretise data into bins that contain values that occur with

equal probability [Lin 2003].

SAX allows a time series of length n to be reduced to a string of arbi-

trary length w, (w < n, typically w � n). The alphabet size is also an

arbitrary integer a, where a > 2. This alphabet size equals to the degree of

discretisation, i.e. how many bins to put the numbers into. The SAX ap-

proach also uses an intermediate representation between the raw time series

and the symbolic strings. It �rst transforms the data into the Piecewise Ag-

gregate Approximation (PAA) representation and then symbolize the PAA

representation into a discrete string.

A time series C of length n can be represented in a w-dimensional space

by a vector C = c1, ..., cw. The i-th element of C is calculated by the following

equation:

ci =
w

n

n
w
i∑

j= n
w
(i−1)+1

cj (2.1)

This step reduces the time series from n-dimensions to w-dimensions by

partitioning the data into w equal sized pieces. The mean value of every

piece is calculated and a vector of these values becomes the data-reduced

representation. This dimensionality reduction step is depicted in Figure 2.1.
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Figure 2.1: An illustration of PAA transformation (with time as X-axis)

as an attempt to model a time series with a linear combination of box basis

functions. In this case, a sequence of length 128 is reduced to eight dimensions

[Lin 2007].

Having transformed a time series database into the PAA, further trans-

formation is applied to obtain a discrete representation. What SAX aims

to produce is symbols with equiprobability, which means that the alphabet

letters are equally likely to occur. The authors of SAX assumed that nor-

malised time series have a Gaussian distribution, based on [Larsen 1986]. If

this assumption is true, then it is straightforward to determine the cut points

that will produce a equal-sized areas under Gaussian curve as can be seen

from Figure 2.2. However it has to be noted that this assertion has been

contested by [Balzanella 2010].

These cut points are a sorted list of numbers B = β1, ..., βa−1 such that

the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a (β0 and βa are

de�ned as −∞ and ∞, respectively). These breakpoints may be determined

by looking them up in a statistical table. Once the breakpoints have been
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Figure 2.2: A time series is discretised by �rst obtaining a PAA approxima-

tion and then using predetermined breakpoints to map the PAA coe�cients

into SAX symbols. In the example above, with n = 128, w = 8 and a = 3,

the time series is mapped to the word baabccbc [Lin 2007].

obtained the values in the PAA can be converted into a letter. For example,

those that are below the smallest breakpoint (β1) are mapped to the symbol

'a'.

2.4 Association Rule Mining

Association rule mining is a term to describe methods that aim to extract

interesting correlations, frequent patterns, associations or casual structures

among sets of items in the transaction databases or other data repositories.

First introduced by IBM researchers in 1993 [Agrawal 1993], it has grown to

be one of the most important and well researched techniques in data mining

[Kotsiantis 2006].

One of the �rst applications of rule mining was on a large database of

customer transactions trying to �gure out what items that are often bought

together and has seen a great acceptance in the retail industry. This has been

touted as one of the greatest successes of Business Intelligence and Data Min-

ing endeavours that has brought the approach into mainstream publications
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with the story of the beer and diaper �nding. The legend has it that using

association rule mining algorithms, retailers in the United States have found

that on Friday nights, men between 30-40 years of age who purchased diapers

were most likely to also have beer in their carts. Using this previously in-

conceivable information, retailers rearranged the aisles and pair these items

together and consequently the sales for both items increased.

2.4.1 De�nition

Let I = I1, I2, ..., Im be a set of binary attributes, called items. Let T be

a database of transactions. Each transaction t is represented as a binary

vector, with t[k] = 1 if t bought the item Ik, and t[k] = 0 otherwise. There is

one tuple in the database for each transaction. Let X be a set of some items

in I. We say that a transaction t satis�es X if for all items Ik in X, t[k] = 1.

Association Rule is the implication in the form X ⇒ Ij , where X is a set of

some items in I, and Ij is a single item in I that is not present in X. The rule

X ⇒ Ij is satis�ed in the set of transactions T with the con�dence factor

0 ≤ c ≤ 1 ⇐⇒ at least c% of transactions in T that satisfy X also satisfy

Ij. The notation X ⇒ Ij | c can be used to specify that the rule X ⇒ Ij has

a con�dence factor of c.

Given the set of transactions T , association rule mining generates all rules

that satisfy these following constraints of di�erent form:

1. Syntactic Constraints : These constraints involve restrictions on items

that can appear in a rule. For example, one may be interested only in

rules that have a speci�c item Ix appearing in the consequent, or rules

that have a speci�c item Iy appearing in the antecedent.

2. Support Constraints : These constraints concern the number of trans-

actions in T that support a rule. The support for a rule is de�ned to be
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the fraction of transactions in T that satisfy the union of items in the

consequent and antecedent of the rule. Support should not be confused

with con�dence. While con�dence is a measure of the rule's strength,

support corresponds to statistical signi�cance. Besides statistical sig-

ni�cance, another motivation for support constraints comes from the

fact that people are usually interested only in rules with support above

some minimum threshold for practical reasons.

It becomes obvious why these constraints are of utter importance in large

dataset rule mining: without de�ning a set of items that we are interested

in and without de�ning a minimum threshold of support and con�dence,

the system will produce copious amount of rules that are not of interest or

signi�cance, and ultimately meaningless. In this context, the problem of

discovering all association rules can be decomposed into two subproblems:

1. Generate all combinations of items (itemsets) by �nding all those that

have fractional transaction support above a certain threshold, called

minsupport. The support for an itemset is the number of transactions

that contain the itemset. This combined with the syntactic constraints

further constrain the admissible combinations. For example, if only

rules involving an item Ix in the antecedent are of interest, then it is

su�cient to generate only those combinations that contain Ix.

2. Use the itemsets obtained from the previous step to generate the desired

rules. For a given itemset Y = I1, I2, ...Ik, k ≥ 2, generate all rules (at

the most k rules) that use items from the set Y . The antecedent of

each of these rules will be a subset X of Y such that X has k−1 items,

and the consequent will be the item Y −X.

In the following sections, a framework for sequential rule extraction from

multiple time series data is described that incorporates discretisation; pat-

tern speci�cation for rule generation, sequential rule mining, and �nally rule
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evaluation methods. Fundamental concepts that the proposed technique is

built on will be presented �rst, followed by the description of the proposed

methodology and its constituent components.

2.5 Proposed Framework

This section will elaborate in detail on the framework that we used to mine

temporal rules. Three major steps are involved, namely discretisation of time

series variables, rule extraction and �nally, rule evaluation.

2.5.1 Sequential Pattern Mining

One of the very �rst studies on extracting rules from time-series data used

a clustering method to discretise the time-series based on geometrical shape

and proposed a modi�ed Apriori algorithm to discover rules from a set of dis-

cretised time-series [Das 1998]. A general methodology for knowledge discov-

ery from time-series which produce fuzzi�ed rules based on an information-

theoretic and connectionist approach was also proposed [Last 2001].

Aside from these studies, research in time-series rule mining has revolved

mostly around improvement to certain aspects of the aforementioned tech-

niques, such as the discretisation step, and di�erent applications of it. Useful

rules were mined from multi-attribute medical data, speci�cally from multiple

surface electromyogram (EMG) data to analyse muscle movement behaviors

with sequential apriori algorithm [Pradhan 2009]. Rule mining as a part of

an integrated time-series data mining of medical therapy data as part of a

hospital information system has also been explored [Abe 2005]. Temporal

rule mining was also used for �nancial data analysis in conjunction with

the usage of symbolic aggregate approximation (SAX) as the discretisation

technique [Warasup 2006].



Rule Discovery from Multiple Time-series Stream 17

2.5.2 Problem De�nition

The temporal rule extraction problem in general can be stated as the dis-

covery of rules that associate the occurrence of an event of interest B within

a given time period T of the occurrence of another event A. The events A

and B are represented by items or sets of items (henceforth referred to as

itemsets). We will �rst formally de�ne the notion of itemsets in the context

of temporal rule extraction.

Given a set of n time series variables: X1, X2, ...., Xn that are considered

to be predictors of another time series Y , we �rst obtain the discretised

versions of the predictor variables as sets D1, D2, .., Di, .., Dn respectively,

where each Di is itself a set of symbols obtained by discretising variable Xi.

An itemset I can now be de�ned as:

I ⊆ DS (2.2)

where DS =
⋃
s=1,nDsI.

Thus an itemset is essentially a set of co-occurring items as in classical

association rule mining, but with the added constraint that their occurrence

is sequential in nature.

A temporal rule spanning a time period T is denoted by (A
T⇒ B) where

A,B are itemsets, supp(A) > minsup, supp(B) > minsup represent the sup-

port of itemsets A and B respectively, whileminsup is a user de�ned minimum

support threshold; con�dence of the rule c(A T⇒ B) = supp(A,B,T )
supp(A)

> minconf,

a user de�ned threshold on con�dence, and T is a user de�ned time hori-

zon that speci�es that itemset B occurs at most T units of time after the

occurrence of itemset A. This de�nition is an expanded version of the non-

sequential rule mining described in Section 2.4.1 by the addition of a previ-

ously nonexistent or ignored temporal variable.

In the context of the aphids dataset we restrict the itemset B to strings

containing the symbol that denotes high occurrence of aphid count as the
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focus of the research is to discover events that lead to high levels of aphid

infestation.

2.5.3 Adaptive-window Discretisation

Since most of sequential rule mining algorithms work on data in the form of

strings of symbols, one of the most crucial steps in this framework is to �nd

the most appropriate way to transform numerical values of the time-series

into symbolic strings. Di�erent strategies have been proposed by various

researchers to suit the characteristics of the data.

In this research, SAX can be applied to all but one of the time series vari-

ables. The result with SAX on ecological species count observation series,

which follows a Poisson distribution, is not satisfactory. Because SAX works

on the assumption that the values follow Gaussian distribution, there were

a lot of miscategorised small peaks. Figure 2.3 shows that discretising the

time-series into a low-high two-symbol string with SAX will incorrectly assign

many low-valued peaks to the high symbol. When faced with such a prob-

lem the usual workaround is to log-transform the numerical value to �t the

Gaussian distribution, but such transformation with ecological count data

for the purpose of satisfying the parametric assumption should be avoided

[O'hara 2010]. This became a problem because ecological species count data

is very often sparse, containing many zero values and as such a log transfor-

mation is often applied.

The proposed sliding window algorithm works by having two segments of

a particular size starting from the beginning of the series which slide across

the series incrementally. A model is built by using training data in the left

segment, and the model is then deployed on new unseen data arriving in the

right segment. If the root mean square error of the model on the test (right)

segment exceeds a certain threshold, then the data element that de�nes the
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Figure 2.3: Discretisation result comparison. Values of 0.1 and 0.2 have

been selected to signify which part of the time-series signal is discretised as

a high-signal by SAX (box marks) and the proposed sliding window approach

(circle marks).
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boundary between the left and right segments is considered to be a cut point.

A cut point represents a transition from either a low signal state to a high

signal state or vice-versa. In order to distinguish between the two cases we

record the average signal value between the left and right segments. If the

average of the right segment is larger, then a transition from a low state to

a high state is indicated, else the transition occurs in the opposite direction,

from high to low [Hartono 2014].

The comparison made in Figure 2.3 shows that the proposed algorithm

is more selective in indicating which peaks are considered to represent high

occurrences of aphids. Moreover, the change-detecting nature of the algo-

rithm means that the segmentation is not made according to the absolute

value in the time series, but the changes in the value which indicate concept

changes. This explains why the high symbol generated by the sliding window

algorithm seems to be segmenting a little bit ahead of the actual peak. Once
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the right window sees the peak, the cut point which is ahead of it, is made.

This behaviour is expected to be useful in detecting a pest outbreak, where

the identi�cation of when a concept change happens is more important than

identifying when a peak occurs. Although there is no rigid objective criterion

as to which discretisation is better, the e�ectiveness of the discretisation can

be indirectly evaluated by looking at the rules produced in the consequent

steps.

Algorithm 2.1 Sliding-window model based discretisation

INPUT: D, block-size, ε (threshold for change detection)

a← 1

i← 1

while not �nished scanning the time-series do

b← a+block-size

model ← build-model(D[a:b])

error ← test-model(D[b:b+block-size])

if error > ε ∧ avg(D[a:b])<avg(D[b:b+block-size]) then

highpoint[i] ← b

i← i+ 1

end if

a← a+ 1

end while

return highpoint

The pseudo-code for this sliding window based discretisation algorithm is

laid out in Algorithm 5.2. The algorithm is intuitive and has been explored

before as a way to segment time-series along with variations in the selection

of the regression model (linear vs non-linear) to �t the data and ways to

measure the error [Keogh 2004]. This generic algorithm can be implemented

by utilizing any type of learning scheme. In this research, we have chosen
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to use a multiple linear regression model in conjunction with a lagged data,

1-step ahead prediction training/testing regime. Regression was a natural

choice as the underlying data is numeric in nature and the linear variant

is e�cient while being reasonably robust in terms of predictive accuracy.

In this algorithm, one important parameter that has to be tuned is the ε,

which will signify the sensitivity of the change detection. This parameter

can be optimized by incrementing the value until there is no change in the

discretisation result, which suggests that the detected changes are signi�cant

enough.

2.5.4 Itemset candidate generation

Given a sequence D(S) = (a1, a2, ...an), the itemset candidate is:

I =
{
i | i ⊆ D(S) ∧ |i| < T

}
(2.3)

where T is a prede�ned maximum time period. This step will essentially

generate a set of all the subsequences possible from a sequence where the

length of every subsequence is not larger than T .

2.5.5 Rule Extraction

As introduced in section 2.5.2, we used an association rule mining algorithm

which produces rules in the form:

if A occurs, then B occurs within time T.

where A,B are itemsets. Instead of representing symbols like in [Das 1998],

the A and B represent subsequences. If the above rule is denoted as A T⇒ B,

then we calculate the con�dence of each rule as:
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c(A
T⇒ B) =

supp(A,B, T )

supp(A)
, (2.4)

where

supp(A,B, T ) =
∣∣∣{i | ai = A ∧B ∈

{
ai+1, ..., ai+T−1

}}∣∣∣ (2.5)

and ai is the symbol that occurs in the ith time step.

Equation (2.5) represents the number of occurrences of A that are followed

by B within a given time period T . The pseudocode of a generic implemen-

tation of this technique is presented in Algorithm 2.2 and can be optimized

or modi�ed in various ways to suit any need.

Algorithm 2.2 Rule-mining algorithm
INPUT: D1,...,n, minsupp, minconf, T

I ← generate-itemset(D)

counter ← 0

for i=1 to n do

for all a in Ii do

for all b in Ii that occurs in T time steps after a do

con�dence ← support(a,b,T) / support(a)

if con�dence > minconf ∧ support(a) > minsupp then

rules[counter] ← a
T⇒ b

counter ← counter + 1

end if

end for

end for

end for

return rules
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2.5.6 Rule Selection criteria

One issue with association rule mining in general and sequential rule mining

in particular is that a large amount of rules may be generated, most of

which may be trivial and/or uninteresting. Thus, the selection of those

rules that are signi�cant and interesting is a challenging task. Adopting

the idea of support and con�dence from associative rule mining could be

useful. Con�dence and support are the two most commonly used metrics

for measuring rule quality, but a number of researchers have devised other

measurements of interestingness for association rules such as the J-measure

and Mutual Information, and have subjected these measures to validation

and testing [Lallich 2007][Tan 2002]. The J-measure [Smyth 1992] could be

used here and is de�ned as:

j(A
T⇒ B) = p(A) ∗

(
p(B|A) · log

(p(B|A)

p(B)

)
+(1− p(B|A)) · log

(1− p(B|A)

1− p(B)

)) (2.6)

In this context, p(A) is the probability of pattern A occurring among all

itemsets of the same length generated from the sequence, while p(B|A) is the

probability of pattern B occurring within T time period after the pattern A.

The left-hand term gives weight to the frequency of the pattern A, and the

right-hand term is the cross-entropy or the information gain. Cross-entropy

is well known as a goodness-of-�t measure between two distributions. In

this sense, the J-measure is a measure of how dissimilar the a priori and

a posteriori beliefs are about a rule. Since there are many rules with high

con�dence with low support, and vice versa, J-measure is useful because it

combines and gives a balanced measurement between the support and con�-

dence. Practically, it can be used as a sound method to create an additional

criterion to rank rules.
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In this research T is considered as an additional constraint measuring the

usefulness of the rules generated. There is obviously little bene�t in mining

rules with high con�dence and support but which span over a long period of

time. That is the real world equivalent of saying a plane crash will happen

within the next decade. The statement carries a very high level of con�dence,

but is not particularly useful because of the excessive length of the prediction

period.

2.5.7 Rule Format Extension

We extend the rule format and algorithm to accommodate multiple an-

tecedents from di�erent time-series in the form:

if A1 and A2 and ... and Ah occur within V units of time, then B occurs within

T time units.

The above rule can be denoted by A1 ∧ ... ∧ Ah
V,T⇒ B. This opens up the

possibility of mining from multiple time-series and extracting interactions

between the variables involved.

2.6 Experimental Study

The methods described in this chapter was empirically tested on a dataset

which comprises of aphid trap catches recorded by Crop & Food Research,

Lincoln, Canterbury, and weekly weather data consisting of 12 weather vari-

ables recorded at the Canterbury Agricultural Research Center, Lincoln, New

Zealand, spanning over 19 years as described in [Worner 2002].
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Figure 2.4: A macro habitus photograph of a wingless adult Rhopalosiphum

padi, one of the species of aphids that are collected in the dataset. Photo:

Brendan Wray, AphID, USDA APHIS ITP, Bugwood.org

2.6.1 The Dataset

The dataset used in this experiment comes from nineteen years of aphid

trap catches recorded by Crop & Food Research, Lincoln, Canterbury, and

weekly weather data consisting of 12 variables recorded at the Canterbury

Agricultural Research Centre, Lincoln. The data collection for all variables

started from week 27 of 1981 and extended to week 26 of 2000.

The following independent variables were available: cumulative weekly

rainfall (mm); maximum, minimum and mean air temperature (◦C); grass

minimum temperature (◦C); solar radiation (MJ/m2); wind run (km/day);

vapour pressure (hPa); Penman potential evaporation (mm); potential de�cit

(accumulated excess of Penman over rainfall); average weekly degree days

(above a threshold of 0◦C); and soil temperature at 100 cm below ground

(◦C).

Weather conditions in�uence aphid population dynamics either directly,

by a�ecting development and survival, or indirectly by a�ecting natural ene-
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mies or the aphid host plant. Several studies have shown aphid migrations to

be correlated with the weather conditions prevailing prior to migratory �ights

and have used these relationships to predict them [Worner 1995]. Several

aphid species are vectors of barley yellow dwarf virus (BYDV), an impor-

tant cause of yield loss in wheat crops in New Zealand. In Canterbury, the

most dangerous aphid vector is Rhopalosiphum padi. Any prior information

that can indicate the imminence of an outbreak of this species would bene�t

growers by better informing their pest management decisions.

2.6.2 Experimental Con�guration

In this research, the number of variables used are limited to: Cumulative

weekly rainfall, wind run, average air temperature, potential de�cit, Penman

potential evaporation, and solar radiation.

The experiment focuses on whether the proposed framework and methods

could discover interesting rules from the multiple time series that can act as

a precursor of aphid infestation, and also to see the e�ect and the sensitiv-

ity of parameter values on the results obtained. Since the focus of interest

is prediction of high incidence of aphid infestation the rules extracted are

restricted to those that feature high aphid count occurrence on rule conse-

quents. We also conduct a sensitivity analysis on key parameters such as

window size (w), prediction time horizon (T ), minimum support threshold

(minsupp) and minimum con�dence threshold (minconf ).

All experiments were run on a Core i7 processor con�guration running

under Windows 7 with MATLAB as the main programming tool.

2.6.3 E�ects of Minimum Support Threshold

Figure 2.5 shows the e�ect on the number of rules generated as the minsupp

threshold is increased. As expected, when minsupp increases from 0 a steady
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Figure 2.5: Number of rules generated with di�erent minconf and minsupp
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decrease in the number of high con�dence rules (with con�dence ≥ 0.8) is

observed. Interestingly, with no constraint on support we observe that a

substantial number of rules (numbering 10) with con�dence of 1 predict high

occurrence of aphid infestation within a week of the triggering event �ring on

the rule antecedent. The time step resolution used is weekly, as the aphids

count data was collected on a weekly basis. The same trend is observed for

higher minsupp threshold values, although the number of high con�dence

rules generated reduces by a factor of 2 or more.

2.6.4 E�ect of Window Size

Figure 2.6 shows that as the window size w increases from 1 a higher num-

ber of high con�dence rules can be obtained. Basically, the reason is that

smaller window sizes are vulnerable to the e�ects of noise. Small window

sizes capture smaller transitions between states when compared to larger

window sizes, thus e�ectively identifying smaller peaks. The problem with

smaller peaks is that they are associated with random behaviour, thus trigger
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Figure 2.6: Number of rules generated with di�erent window size of dis-

cretisation
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conditions on rule antecedents are rendered ine�ective, giving rise to low con-

�dence rules. As the window size increases from 2 the noise level decreases

and the number of high con�dence rules increases.

However, increasing the window size from 6 to 8 results in a reduction in

the number of high con�dence rules. Beyond a certain threshold on window

size, dependent on the nature of the underlying dataset, some high valued

peaks will not be detected and thus some rules, including some with high

con�dence rules will not be generated. Moreover, too large a window size

is undesirable because the period of time that T represents corresponds to

the window size. Having a wide window size for T means that the rules

produced have a longer window of prediction, rendering them less useful.

We decided to use w = 4 as the window size, which is what we thought as a

practical trade-o� between the number of rules generated and the resolution

of prediction.
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Figure 2.7: Number of rules generated by di�erent antecedent variables
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2.6.5 E�ects of Rule Antecedent Variable

A visualization of the di�erence in the ability of the variables to produce

rules with varying levels of con�dence is shown in Fig2.7. The number of high

con�dence rules which a variable can produce is an indicator of its relative

importance in in�uencing a high aphid count outcome. In this context, we

can infer that the cumulative rainfall is relatively less important than the

other variables, and on the other hand, the Penman potential evaporation

seems to be a very strong feature, being able to produce rules with very high

con�dence.

Table 2.1 shows some of the rules that are discovered using the algorithm.

These rules are visualized in Figure 2.8, 2.9, and 2.10, which show the occur-

rence of high aphid count following the triggering events which are captured

by the antecedent of the rule. The string symbols used as the antecedent

and the consequence of the rules are from the discretised time series with 4

levels of intensity, the character a and d for the lowest and the highest values

respectively. Thus Figure 2.8 shows that 4 consecutive occurrences of high



Rule Discovery from Multiple Time-series Stream 30

Figure 2.8: Rule visualization: ddddaaa to b

0 100 200 300 400 500 600 700 800 900 1,000
0

0.02

0.04

0.06

0.08

0.1

Week number

N
or
m
al
iz
ed

va
lu
e

Aphids Count
Potential de�cit

Antecedent pattern
Detected Peak

Table 2.1: Some rules produced by the method

w Antecedent Rule
Supp.

(%)

Conf.

(%)
J-Measure Fig.

4
Potential

de�cit
ddddaaa 1⇒ b 8.86 70 0.0036 2.8

4
Penman

evaporation
aaaabcddd 2⇒ b 3.52 75 0.0024 2.9

4

Potential

de�cit &

Mean tem-

perature

aaaaabbb, dddcb
4,1⇒

b
0.8 100 0.0009 2.10

potential de�cit values (denoted by symbol "d") followed by 3 consecutive

low level occurrences of potential de�cit (denoted by symbol "a") triggers a

high aphid count. This can be interpreted as the occurrence of a rapid drop



Rule Discovery from Multiple Time-series Stream 31

Figure 2.9: Rule visualization: aaaabcddd to b
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after a period of high values in the antecedent. The high con�dence of the

rule is evident from the visualization that shows that the antecedent pattern

is followed almost always by a peak in the aphid count value. The support of

the rule is also evident from the number of co-occurrences of the antecedent

and consequent patterns - i.e. the number of times that the string dddaaab

occurs in the data.

Likewise, Figure 2.9, and 2.10 visually show the con�dence of rules:

aaaabcddd
2⇒ b and aaaaabbb, dddcb

4,1⇒ b respectively. The latter rule clearly

shows the e�ect of having multiple variables in the rule antecedent. The

inclusion of Mean temperature with Potential de�cit in the rule antecedent

results in an increase in con�dence of 30% over the use of Potential de�cit

alone. However, the trade-o� caused by the inclusion of the additional vari-

able has caused the support and J-measure metrics to decrease substantially.
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Figure 2.10: Rule visualization: aaaaabbb, dddcb to b
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2.6.6 Conclusions

Overall, it is evident that the rules generated in this experiment are useful

in identifying high levels of aphid infestation. For example, rules 1 and 2 in

Table 2.1 identify trends in Potential de�cit and Penman evaporation vari-

ables respectively that lead to high aphid count with reasonably high levels

of con�dence (70% and 75% respectively), while giving growers an adequate

time periods (1 week and 2 weeks, respectively) to implement suitable pest

control measures. This usefulness also comes from the interpretability of the

rules that can be expressed in a form that humans can understand with rel-

ative ease. For instance, rule 1 (shorthand form ddddaaa
1⇒ b | 70) can be

reformulated in natural language form as:

If very high values of Potential de�cit occur for 4 weeks and then followed

by 3 weeks of very low value, then 70% of the time, a surge in aphids

count will occur within 1 week.

These temporal rules are not only human-readable and actionable, but also
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descriptive of the relationships between variables that also take time informa-

tion into account. These rules can potentially discover a previously unknown

direct or indirect causality or correlation between itemsets and can also be

veri�ed and cross-checked with the existing body of literature in the prob-

lem domain. In this case with the Potential de�cit, it has been noted by

several ecological studies that humidity and evaporation play an important

role in the reproductive cycle and migration of aphids [Lowe 1966, Dill 1990,

Hand 1983].

2.7 Conclusions

In this chapter, a generic framework for mining temporal rules from multiple

time-series has been described and a case study on an ecological dataset has

been demonstrated. It works by �rstly transforming the time-series data into

symbolic representations. This is achieved by using discretisation algorithms.

A way to do binary discretisation was also described, which uses simple

sliding windows. The next step is itemset candidate generation and rule

extraction by using a modi�ed apriori algorithm which was made to consider

temporal dimension and are able to work with multiple time series. Finally,

several rule selection criteria are further applied to obtain the best rules.

A case study with multiple time-series data was also presented and dis-

cussed. We used a real-world ecological data that tracks the weekly count of

aphids captured in suction traps along with the weather variables for almost

20 years. The methods described have been shown to be able to extract

some useful temporal rules and have the potential to be applied in many

other �elds in which such rules could be used to improve the ability of hu-

mans to predict the likelihood of an incident happening based on currently

available observations.



Chapter 3

Adaptive Local Models for

Spatiotemporal Data Analysis

3.1 Introduction

This chapter introduces a method to build local models for spatiotemporal

data stream analysis. As opposed to building a single global model to learn

all the data in the input space, multiple models can be employed to handle the

data in a localised manner. To construct these local spaces of concepts, we

treat the problem as an exercise of detecting concept drifts in space and time.

By combining the locality-preserving behaviour of the Hilbert curve and the

versatility of concept-drift detection algorithms, the system can continuously

and inde�nitely adapt to concept drifts and unseen changes in incoming data

stream.

The proposed system was tested on a dataset of the occurrence of after-

shocks for years around the city of Christchurch after the great 2010 Dar�eld

earthquake, discussed in detail in Chapter 4. It exhibits superior performance

and accuracy over a global model approach, and additional visualisations can

be extracted from the resulting localised regions.

The following sections of this chapter are structured as follows:

• The theoretical foundations of this research are discussed in Sections

3.2, 3.4, and 3.3. The rationale for local models and the use of Hilbert

curve along with concept-drift detectors is explained.
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• Section 3.5 introduces the proposed methodology, which traverses the

data over the spatial dimension with Hilbert curve and feed it to a

concept-drift detector algorithm to determine regions belonging to the

same concepts. Some performance measures for spatiotemporal data

are also discussed.

3.2 Local Models

A fundamental concern that one has to take into account in dealing with

data that is referenced in space is with the di�erences between places. Tradi-

tionally, global models have been employed in quantitative analyses of such

data with the implicit assumption that there is no variability of data char-

acteristics as a function of space. Global methods make use of all available

data, whereas local methods are often de�ned as those that make use of

some subset of the data. Therefore, it may be the case that a global model

does not represent well the variations that exist at any individual location

[Lloyd 2010].

The main principle behind the motivation to using local methods is the

concept of spatial dependence. That is, objects that are near each other

in space tend to be more similar than to objects which are farther apart

[Tobler 1970]. This principle was called the Tobler's First Law of Geography.

The term spatial autocorrelation refers to the correlation of a variable with

itself and where neighbouring values tend to be similar this is termed positive

spatial autocorrelation. Where neighbouring values tend to be dissimilar this

is termed negative spatial autocorrelation. Figure 3.2 illustrates the visual

di�erence between these di�erent cases.

In the �eld of statistics, the problem of spatial nonstationarity has been

a subject of great interest. Early research e�orts on spatiotemporal forecast-

ing focused on adapting existing statistical regression models from the �elds
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Figure 3.1: Illustration of the di�erence between global (left) and local mod-

elling (right) in trying to �t data in the input space. The local linear regres-

sion models are built based on clusters of sample data set in a 2-dimensional

space.

of time series analysis, spatial analysis and econometrics to deal with spa-

tiotemporal data. Such models are typically geared towards teasing scarce

information from homogenous datasets and have been overwhelmed by the

increasing volume and diversity of spatiotemporal data that is now being col-

lected. Some of these models also need parametric assumptions of the data

distribution. Researchers and practitioners are increasingly turning towards

less conventional techniques, often drawing inspiration from the �elds of ma-

Figure 3.2: Spatial data may demonstrate a pattern of positive spatial au-

tocorrelation (left), negative spatial autocorrelation (right), or a pattern that

is not spatially autocorrelated (center). [Radil 2011]
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chine learning and data mining, that are better equipped to deal with the

heterogeneous, nonlinear and multi-scale properties of large scale spatiotem-

poral datasets.

It has been demonstrated that machine learning algorithms can improve

their performance signi�cantly if a speci�c adaptation to the given prob-

lem is employed. Vapnik argued that when the data is clearly non-evenly

distributed, one can signi�cantly improve the prediction result by building

multiple local models instead of one global model [Bottou 1992]. Vapnik

later introduces the concept of transductive reasoning or transductive in-

ference and de�ned it as a method that is used to estimate the value of a

potential model only for a single point of space by utilising additional in-

formation related to that vector [Gammerman 1998]. In [Widiputra 2011],

multiple time-series prediction can be greatly improved by identifying local

models based on the trends found by clustering. Local models for time-series

prediction problem using concept-drift detection has also been explored in

[Barddal 2015].

The principle of transductive reasoning can be applied to enhance the ca-

pability of Support Vector-based learning algorithms to deal with the prob-

lem of spatial dependence [Gilardi 2000]. It works by building one model for

each point to be estimated, taking into account only a subset of the training

points. This subset is chosen on the basis of the Euclidean distance between

the testing point and the training point in the input space. For each testing

point, a new model is learned using only training points lying inside a user

de�ned radius which centre is the current testing point. Besides the compu-

tational power needed to build a model for each point, deciding this radius

is not a trivial problem. It needs a priori knowledge about the dataset. If

the selected radius is too small, the data points might not be enough to train

the model. If the radius is too big, it will impact the training time.

In the following sections, concepts that are applied and became part of the
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methodology are brie�y laid out to explain the underlying theoretical con-

siderations of employing them in tackling the problem of spatial dependence.

In this research, we treat the nonstationarity problem as a case of handling

concept drifts in space and time by answering the question on how to iden-

tify these local regions of homogeneous data points. This highly-automated

method allows for minimal human involvement. A key component of this

methodology is the application of the Hilbert curve to transform a signal in

two dimensions to a single dimension in order to enable a concept drift detec-

tor that normally operates in one dimension to be used in a spatiotemporal

context.

3.3 Concept-drift

The nonstationarity of data is a common challenge when mining data streams,

where the concept (i.e., the underlying distribution or statistical properties)

of incoming data unpredictably drifts over time. A typical example is weather

prediction rules that may vary radically between seasons. Another example

is the patterns of customer buying preferences that may change with time,

depending on the current day of the week, availability of alternatives, in�a-

tion rate, etc. Often the cause of change is a hidden context, not known a

priori, making the learning task more complicated [Widmer 1996]. An ef-

fective learner should be able to track such changes and to quickly adapt

to them. Over the last decade, research related to learning with concept

drift has been increasingly growing and many drift-aware adaptive learning

algorithms have been developed [Gama 2014]

In a supervised learning context, there are two general approaches to

concept detection. One way is to have a multivariate test keeping track of

incoming samples and see whether a change in statistical properties has taken

place. Another way is to feed the classi�cation error to a change detector,
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which will detect if a statistically signi�cant shift has occurred in the error

rate. A change in the error rate indicates the arrival of a new concept which

has not been learned by the classi�er. This latter approach is used in this

thesis.

3.3.1 De�nition

In machine learning the problem of supervised learning is formally de�ned

as follows. We aim to predict a target variable y ∈ R in regression tasks

(or y categorical in classi�cation tasks) given a set of input features X ∈ R.

An example is one pair of (X, y). During training, both X and y are known

and used for model building. The predictive model is then applied on new

examples where X is known, but y is not known.

A classi�cation can be described by the prior probabilities of the classes

p(y) and the class conditional probability density functions p(X|y) for all

classes y = 1, ..., c, where c is the number of classes. In regression, the

target value takes continuous values. The classi�cation decision is made

according to the posterior probabilities of the classes, which for class y can

be represented as:

p(y|X) =
p(y)p(X|y)

p(X))
(3.1)

where p(X) =
∑c

y=1 p(y)p(X|y). In dynamically changing environment,

the underlying distribution of data can change over time. Formally concept

drift between time point t0 and time point t1 can be de�ned as:

∃X : pt0(X, y) 6= pt1(X, y) (3.2)

where pt0 denotes the joint distribution at time t0 between the set of input

variables X and the target variable y. Changes in the components of this

relation characterises changes in data [Gao 2007]:
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• Prior probabilities p(y) may change,

• Class conditional probabilities p(X|y) may change.

• Posterior probabilities p(y|X) may change and thus a�ect the predic-

tion performance.

3.3.2 Detection

Dealing with data whose nature changes over time (as de�ned in Section

3.3.1) is one of the core problems in data mining and machine learning. To

mine or learn such data, one of the necessary tasks is to detect when such

changes occurs.

Let S1 = (x1, c2, ..., xm) and S2 = (xm+1, ..., xn) with 0 < m < n repre-

senting two samples of instances from a stream with population means µ1 and

µ2 respectively. Change detection problem can be described as testing the

null hypothesis H0 : µ1 = µ2 against the alternate hypothesis H1 : µ1 6= µ2.

If H0 is rejected, concept drift is taken to have occurred.

The standard tools for drift detection are methods from statistical de-

cision theory. These methods usually compute a statistic from the avail-

able data, which is sensitive to changes between the two sets of examples

[Dries 2009]. The measured values of the statistic are then compared to the

expected value under the null hypothesis that both samples are from the

same distribution.

Concept drift detectors are used in this framework to analyse the data

stream and label similar or homogeneous data points together. Several meth-

ods have already been proposed, one of which is the Drift Detection Method

(DDM) [Gama 2004]. It uses a base learner to classify incoming instances

and the classi�cation result is used to compute the online error rate of the

base learner. If the base learner correctly classi�es the actual instance, the
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error rate decreases. DDM considers that, when the concept changes, the

base learner will incorrectly classify the arriving instances that are created

based on a di�erent data distribution. Thus, if the error-rate increases, it is

an indication of a concept drift. The average error rate pi and the standard

deviation si are computed and then used to determine between Warning and

Change states when pi + si is over a threshold.

The Early Drift Detection Method (EDDM) is similar to DDM but in-

stead of using the error rate, it uses the distance-error-rate of the base learner

to identify whether a drift has occurred [Baena-Garc�a 2006]. EWMA for

Concept Drift Detection (ECDD) is a proposal for a drift detection method

based on Exponentially Weighted Moving Average (EWMA), used for identi-

fying an increase in the mean of a sequence of random variables [Ross 2012].

Di�erent test statistics have been proposed to deal with change detection

problem. The Kolmogorov-Smirno� (KS) test computed through the use of

KS-Tree was used to determine whether the samples came from the same

distribution [Kifer 2004]. A semi-parametric log-likelihood change detector

was proposed based on Kullback-Leibler statistics [Kuncheva 2013]. Another

based on Martingale tests has also been proposed [Ho 2005].

Adjusting the windowing or sampling scheme and modifying test statistics

are among the ways to improve the accuracy and performance of change de-

tection algorithm. For example, the algorithm SeqDrift1 [Sakthithasan 2013]

was able to cut execution time dramatically and improve the false positive

rate compared to ADWIN by using sequential windowing and the use of Bern-

stein bound. Additional improvement in detection delay can be achieved in

the next iteration of the algorithm, SeqDrift2, by using reservoir sampling

and a di�erent derivation of the Bernstein bound [Pears 2014].

Theoretically, various kinds of existing change detectors are usable with

this research. For the purpose of this research, we chose ADWIN as it does

not need too many parameter tuning and provides a rigorous guarantees on
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false positive and negative rates.

3.3.3 The ADWIN Algorithm

Short for ADaptive-WINdow, ADWIN works on the principle of statistical

hypothesis testing [Bifet 2007]. It works by using a window consisting of

all instances that have arrived since the last detected change point. On

the arrival of each new instance, the current window is split into two sub-

windows, left and right. The sample means of the data in the two sub-

windows are compared under a null hypothesis H0 that the means across the

sub-windows are not signi�cantly di�erent from each other. If H0 is rejected,

concept drift is taken to have occurred and ADWIN shrinks the window to

only include instances in the right sub-window, thus removing instances in

the left window representing the old concept.

Algorithm 3.1 Adaptive Windowing Algorithm
INPUT: Stream data X of inde�nite length t

Initialise Window W

for each t > 0 do

W ← W ∪ {xt}

repeat

Drop elements from the tail of W

until |µ̂w0 − µ̂w1| ≥ εcut holds for every split of W into W = W0 ·W1

output µ̂w

end for

The algorithm is presented in Algorithm 3.1. It keeps a sliding window

W with the most recently read xi. Let n denote the length of W , µ̂W the

average of the elements inW , and µW the average of µt for t ∈ W . Whenever

two large enough subwindows ofW exhibit distinct enough averages, one can

conclude that the corresponding expected values are di�erent, and the older
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portion of the window is dropped. The value of εcut for a partition W0 ·W1

of W is computed as follows: Let n0 and n1 be the lengths of W0 and W1

and n be the length of W , so n = n0 + n1. Let µ̂W0 and µ̂W1 be the averages

of the values in W0 and W1, and µW0 and µW1 their expected values:

εcut =

√
1

2m
· ln 4

δ′
(3.3)

where m = 1
1/n0+1/n1

and δ′ = δ
n
.

The statistical test simply checks whether the observed average in both

subwindows di�ers more than the threshold εcut. ADWIN's only user-given

parameter is a con�dence bound δ. We use all the default values set in an

implementation of ADWIN found in the open-source stream data mining tool

MOA.

3.4 The Hilbert Curve

First described by the German mathematician David Hilbert, The Hilbert

curve is a continuous fractal curve which can be represented as a Linden-

mayer system whose limit is a plane-�lling function [Hilbert 1891]. It is a

space-�lling curve, meaning that the ranges pass through every point in a

2-dimensional unit square1 and never crosses itself. It was introduced as

a variant of the Peano curves, which was the �rst space-�lling curve ever

published [Peano 1890].

3.4.1 Construction

According to Jordan's precise notion of continuous curves, a space-�lling

curve is a continuous mapping of the closed unit interval I = [0; 1] into

1Although the space-�lling curves are discussed mostly in 2-dimensional terms in this

thesis, most of them can also be generalised into n-dimensional unit hypercube.
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the closed unit square S = [0; 1]2 [Simmons 1963]. If the interval I can be

mapped continuously onto the square S, then after partitioning I into four

congruent subintervals and S into four congruent subsquares, each subin-

terval can be mapped continuously onto one of the subsquares. If this is

carried on ad in�nitum, I and S are partitioned into 22n congruent replicas

for n = {1, 2, 3, ... } . Alternatively, the construction of Hilbert curve can also

be described geometrically. The curve is initially de�ned on a 2 × 2 lattice

with a u shape. Given an order k curve de�ned on a 2k×2k lattice we de�ne

the curve on a 2k+1 × 2k+1 lattice as follows:

1. Place a copy of the curve, rotated 90◦ counter clockwise, in the lower

right cell

2. Place a copy of the curve, rotated 90◦ clockwise, in the lower left cell.

3. Place a copy of the curve in each of the upper cells.

4. Connect these four disjoint curves in the obvious manner.

It was demonstrated that the subsquares can be arranged so that the

inclusion relationships are preserved, that is, if a square corresponds to an

interval, then its subsquares correspond to the subintervals of that inter-

val. Figure 3.3 illustrates how Hilbert curves are expressed for the �rst �ve

iterations.

An analytical generalization of Hilbert curves for higher dimensional

space was given in [Butz 1969]. A method to generate 3-dimensional Hilbert

curve (Figure 3.4) was described in [Sagan 1993], and further into 4-dimensions

in [Haverkort 2011]. Moreover, an e�cient implementation of 2-dimensional

non-square quadrilateral Euclidean space is also possible [Hamilton 2008],

which is of interest in this research.
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Figure 3.3: Hilbert curves with various iteration order number n.

Figure 3.4: Projection of a 3-dimensional Hilbert curve

3.4.2 Locality preservation

Both the true Hilbert curve and its discrete approximations are useful be-

cause they provide a method to map between 1D and 2D space that preserves

locality measurably well [Moon 2001]. Because of this property, Hilbert curve

has found many use in computer science. For example, it has been used to

compress and accelerate R-tree indexes, which can also be used to help com-

press data warehouses. [Kamel 1993]. In the �elds of image processing and

computer vision, the curve has been utilised to get better results in dithering

[Zhang 1998] and compression [Biswas 2000, Liang 2008].

The locality-preserving property of space-�lling curves in general and

Hilbert curve in particular has been very well studied and attested by multi-

ple analyses in di�erent applications and purposes [Jagadish 1990, Abel 1990,

Moon 2001]. As the linear ordering used in this research to transform the

data, this property is deemed very important to make sure that the 2-

dimensional data is presented as 1-dimensional with as little spatial infor-
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mation loss as possible.

3.5 Proposed Methodology

This section presents a methodology to build predictive local models that

are adaptive to changing environment. It works by treating spatiotemporal

nonstationarity as a concept-drift problem. It achieves so by utilising the

Hilbert curve and change detection algorithm to identify regions with similar

concepts together in space and time. Local models are then built to learn

these regions.

3.5.1 Problem De�nition

The proposed methodology works on a series of data points listed both in

time and space order. This can also be described as an expansion of time-

series problem which includes also spatial dependence in addition to the

temporal dependence. When a variable Z is observed over time at two or

more locations, it is both a spatial series and a time series and can be referred

to as a space-time series z = {z(m,n, t) | m,n ∈ S, t ∈ T} in spatial domain

S of size m × n and temporal interval T . A spatiotemporal series may

exhibit spatiotemporal dependence which describes its evolution over space

and time. If the spatiotemporal dependence in a dataset can be modeled

then one essentially has predictive information.

Although sharing many commonalities in techniques and concepts, the

�elds of time series analysis and spatial analysis have largely developed sep-

arately from one another. The behavior of a variable over space di�ers from

its behavior in time. Time has a clear ordering of past, present and future

while space does not.
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3.5.2 Adaptive Method

The method proposed works by untangling the spatiotemporal series as a 1-

dimensional problem utilising the Hilbert curve as interdimensional mapping

so that it can be readily fed into a concept-drift detection algorithm, which

will give indications of suspected drift points. These cut points mark the

start and end of spatial regions with similar statistical properties.

Based on the problem de�nition laid out in the previous section (3.5.1),

the procedure can be explained as follows:

• For every t ∈ T of space-time series z build a matrix Am×n
t that will

store the model identi�er for every corresponding m,n ∈ S

• The model identi�ers can be implemented in the form of integer num-

bers that is monotonically incremented every time the change detection

algorithm detects a change point.

• As new data comes in time, build and populate an error matrix Et =

(eij) ∈ Rm×n that stores the error (i.e. the di�erence between the

actual and predicted value) for every corresponding m,n ∈ S

• Feed all the entries in the error matrix to the change detection algo-

rithm to detect drifts in concept by transforming the 2-dimensional

matrix into a 1-dimensional vector by scanning and ordering the error

matrix according to the steps taken by the Hilbert curve.

To illustrate this point, a 4× 4 matrix H =


a b c d

e f g h

i j k l

m n o p


becomes vector hilbert(H) = [a b f e i m n j k o p l h g c d].

This ordering can be compared with the second-order Hilbert curve

depicted in Figure 3.5.
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Figure 3.5: A visualisation of a second-order Hilbert curve with the scanning

order derived from it.

• Every time a change is detected, the last concept is learned by a re-

gressor and saved in a repository of model. As an optional step, a

multivariate statistics test based on kNN [Schilling 1986] can be used

to check the repository of an existing similar concept that the system

has seen and learned before and if one is found, it can be recalled and

reused instead of learning a new one. This model reuse means that the

system is able to work with recurring concepts both in space and time.

• To make the step-ahead prediction, information in the matrix A can

be utilised to select which model(s) to use for every spatial grid.

The approach laid out in this section is generic and can be implemented

in slightly di�erent ways. Algorithm 3.2 describes an implementation of

this methodology in pseudo-code form. Variations also include using var-

ious other techniques in place of, for example, the Hilbert curve by using

other space-�lling curve. In this research, we used the MTSKNN package

for R [Chen 2010] as the statistical method to compare models in the repos-

itory. This test works by appending the instances of both samples together,

adding one attribute to indicate from which sample each instance comes from

[Henze 1988, Schilling 1986]. Then, the k closest instances of each instance

are computed. Next, for each instance, it is veri�ed how many of these k

instances come from the same sample. If both samples are drawn from the
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Algorithm 3.2 Adaptive Method for Local Models

INPUT: Z (Spatiotemporal stream dataset), t (Start time)

a← 1

base-model ← build-model(Z[1:t])

modela ← base-model

predictiont+1 ← model(zt)

while there are new incoming data points zt+1 do

Et+1 ← zt+1 - predictiont+1

Êt = hilbert(Et+1)

for all elements Em,n in Êt do

add Em,n to bu�er

if ADWIN(Em,n) indicates change then

a← a+ 1

modela ← get-model-from-repository(bu�er)

if modela == null then

modela ← build-model(bu�er)

save-model(modela)

end if

�ush bu�er

end if

am,n,t+1 ← a

end for

for all elements am,n in At do

predictionm,n,t+1 ← modela(zm,n,t)

end for

t← t+ 1

end while

return highpoint
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same distribution, the k closest instances might, in average, be equally di-

vided between the two samples. For numerical attributes, their values are

used in the computation; for categorical attributes, each category is assigned

a sequential positive integer and these values are used in the computation.

MTSKNN has been used in another study for recurring context detection

with satisfactory results [Gonçalves Jr 2013].

3.5.3 Performance measure

As the experiment works with spatiotemporal data, classical ways of measur-

ing regression prediction performance and accuracy might not be su�cient

to account for the spatial aspect of the prediction. Evaluating the predic-

tive performance of models which works with discretised point-process data

poses a unique challenge, as the same sparseness prevents the direct use of

popular measures such as the root mean squared error [Adepeju 2016]. The

following sections will describe the two performance measurements that we

use to evaluate the system.

3.5.3.1 N-Test

Adopted from the �eld of seismology, The N(umber)-test measures the consis-

tency of a forecast with the observed number of earthquakes [Schorlemmer 2010].

The results of the N-test indicate whether a forecast has predicted too many

earthquakes, too few earthquakes, or a number of earthquakes that may be

considered consistent with the observed number. The N-test does not con-

sider the forecasted or observed spatial distribution of earthquakes. The error

at time t is calculated by:

et =

∥∥∥∥∥
m∑
i=1

n∑
j=1

zi,j,t −
m∑
i=1

n∑
j=1

pi,j,t

∥∥∥∥∥ (3.4)

Which means that all the values in the spatial grids of both the actual
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value and prediction matrix a time frame are summed, and then the di�erence

is calculated.

This di�erence values then will be used to calculate the Mean Average

Error (MAE):

MAE =
1

n

T∑
i=1

ei (3.5)

and the Root Mean Squared Error (RMSE):

RMSE =

√∑T
i=1 e

2
i

n
(3.6)

3.5.3.2 Predictive Accuracy Index (PAI)

Commonly used in criminology to predict 'hotspots' where crime might hap-

pen often, PAI was proposed as ratio of hit-rate to area coverage [Chainey 2008]:

PAI =
( n
N

)
/
( a
A

)
(3.7)

where:

• n : number of crimes in areas where crimes are predicted to occur (e.g.

hotspots)

• N : number of crimes in study area

• a : area (e.g. km2) of areas where crimes are predicted to occur (e.g.

area of hotspots)

• A : area (e.g. km2) of study area

This index has been devised to consider the hit rate against the areas

where crimes are predicted to occur with respect to the size of the study area.

The PAI is calculated by dividing the hit rate percentage (the percentage of

crime events for a measurement data time period falling into the areas where
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crimes are predicted to occur determined from input data i.e. the crime

hotspots) by the Area Percentage (the percentage area of the predicted areas

(the hotspots) in relation to the whole study area.

Although the PAI is a considerably good measurement for hotspot-type

predictions, it has been noted that it may not be too appropriate for methods

that are not speci�cally made to produce hotspots as their output [Levine 2008].

For regression methods, usually a threshold value is selected as a cut-o� be-

tween 'hotspots' and not. To avoid this parametrisation, we modi�ed the

calculation by making a a constant where 1 ≤ a ≤ A. In turn, the n is ob-

tained by counting the number of crimes in areas where the models predict

the a highest predicted value in that particular time frame.

3.6 Conclusions

In this chapter, the theoretical foundation and a description of a method

for building an adaptive spatiotemporal predictive model using concept-drift

detection is presented. It works by identifying regions in space and time

which are homogeneous. This is achieved by treating the data stream as a

concept-drift detection problem. It is possible to use existing change detec-

tion algorithms by mapping the data according to the traversal of Hilbert

curve. Finally, this information is then used to determine the local models to

be learned. Several performance metrics that can be used to evaluate such

system are also discussed. In the next chapter, the method is applied to a

real-world dataset concerning aftershocks.



Chapter 4

Earthquake Aftershocks

Modelling Experiment

4.1 Introduction

In order to test the e�ectiveness of the local predictive models obtained by

the method described in Chapter 3, a real-world spatiotemporal dataset de-

rived from the earthquake catalogue of the Christchurch region was curated.

This area is selected for its seismicity, which has been remarkably very active

since the famous 7.1 moment magnitude earthquake in September 2010 hit

[Stramondo 2011]. This event has triggered a chain of activities that presum-

ably exhibits a continuously changing �ow of processes and concept drifts in

both space and time, which is of interest in this research.

4.2 The Dataset

This section will explain brie�y about the data being used in the experiment

to familiarise the readers to the context regarding the dataset in the problem

domain of seismology and geostatistics and the historical events surrounding

it.
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4.2.1 The Seismicity of Christchurch

In the �rst 80 years of the city's history since its modern establishment in

1848, four large earthquakes signi�cantly damaged the growing settlement.

A 1991 report by the EQC stated that if any one of these four events would

happen again, it would cost the city millions of dollars in direct damage and

could result in major disruption to the local economy [Elder 1991]. This un-

fortunately came true at 4:35 am on September 4, 2010. This principal event,

sometimes referred to as the Dar�eld earthquake, struck with an astound-

ing 7.1 magnitude and triggered series of tremors that occurred within and

near the city of Christchurch and the Canterbury Plains region from early

September 2010 to late December 2011. The earthquake's epicentre was 10

km beneath the surface and located 40 km west of Christchurch near the

town of Dar�eld. It was caused by movement along a previously unknown

regional strike-slip fault later called the Greendale Fault, the displacement

of which created a 29.5 km long surface rupture [Nicol 2010]. Thousands of

smaller aftershocks along with several big events occurred in the months that

followed.

4.2.2 Data Acquisition and Preprocessing

The earthquake catalogue was downloaded from the GeoNet online service

provided by GNS Science and The Earthquake Commission of New Zealand

that can be accessed through the website http://www.geonet.org.nz. At-

tributes supplied by the GeoNet for every earthquake includes the origin

time, the latitude and longitude coordinates of the epicentrum, the magni-

tude, the depth, and so forth.

An arbitrary spatial domain around the city of Christchuch was deter-

mined as the region of interest for this study. Most of what are considered

aftershocks are located over the full area of fault rupture and either occur
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Figure 4.1: The map of New Zealand and the studied region. Coordinates:

North -43.0096, East 173.3741, South -44.1974, and West 171.3132.

along the fault plane itself or along other faults within the volume a�ected

by the strain associated with the main shock [Wells 1994]. This region is

deliberately selected to encompass the major faults that were thought to be

involved in the seismicity of Christchurch, namely the Christchurch Fault,

Greendale Fault, and the Port Hills Fault [Bannister 2012]. The total area of

the region of interest spans approximately 22140 km2 (167.6 km width and

132.1 km height), depicted by Figure 4.1.

The spatial point data is discretised into bins of the total count of shocks

in grids the granularity of which depends on the speci�ed spatial and tempo-

ral resolution. As an example, Figure 4.3 visualises this transformation step

of the earthquakes recorded in the study region for the �rst 24 hours after

the 2010 Dar�eld earthquake as a grayscale heatmap, where colour intensity

corresponds to the count value at the discrete grids. For the purpose of this

experiment, the studied time period starts from 4 September 2010 (two days
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before the 2010 Dar�eld earthquake) up until 27 September 2012, a total of

754 days. This corresponds to point 246 to 1000 on the X-axis of Figure

4.4. This time window is selected because of the noticeable �ow of changes

in seismic processes and activities both in space and time caused by the oc-

currence of several big events. The spatial discretisation resolution is 2 x 2

km, which resulted in a 66 x 84 (5544) data points per time slice.

It has to be noted that this dataset might introduce some bias because

it contains events which are speci�c to a region and time period. However,

this thesis maintains that the results from this dataset is indicative of the

method's general performance based on the generalisability of aftershocks

behaviour as described in the following section (4.2.3). The selection of the

geographical and time spans of the dataset was also driven by pragmatic

concerns. While it was possible to enlarge both the time and spatial bound-

aries the aim of this thesis was to make a contribution in the Computational

Intelligence �eld and not to solve the Earthquake prediction problem per se.

Earthquake prediction remains as one of the most signi�cant open problems

in Science and will likely remain so in the coming decades.

4.2.3 Data Characteristics

The data used in this experiment is a real-world dataset the property of

which has been extensively studied in the �eld of seismology. In this sec-

tion the governing empirical laws regarding the statistical characteristics of

aftershocks will be discussed.

4.2.3.1 Omori-Utsu's Law

One of the earliest attempts to �nd the empirical relationship between The

frequency of aftershocks and time after the main shock was known as the

Omori's law. It is expressed as:
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Figure 4.2: Seismic shocks in the studied region and time period, visualised

in 3D as point-process, displaying concept drifts both in space and time. Ver-

tical axis is time and the horizontal axes are longitude and latitude.

n(t) =
k

c+ t
(4.1)

where k and c are constants, which are di�erent between earthquake

sequences and has to be calculated or estimated after the sequence subside

[Omori 1894]. Nowadays, the commonly used form of Omori's law is the

modi�ed version, commonly called Omori-Utsu's law:

n(t) =
k

(c+ t)p
(4.2)

where p is a third constant which acts as the decay modi�er and typi-

cally falls in the range of 0.8 to 1.2, depending on the earthquake sequence

[Utsu 1961].

It can be inferred from these equations that the rate of aftershocks de-

creases quickly with time. This swift post-event decay is visible by examining

Figure 4.4. The rate of aftershocks is proportional to the inverse of time since

the mainshock and this relationship can be used to estimate the probability
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Figure 4.3: The spatial point map of the earthquakes recorded 24 hours after

the 2010 Dar�eld earthquake (left) and the discretised version as a grayscale

heatmap (right). Each pixel represents a 4 km2 area (2 x 2 km resolution).

of future aftershock occurrence. These patterns describe only the statisti-

cal behavior of aftershocks. The actual times, numbers and locations of the

aftershocks are stochastic, while tending to follow these patterns.

4.2.3.2 Gutenberg-Richter Law

The Gutenberg-Richter Law is an empirical relation between the magnitude

x of some seismic event, and N(x), the number of events with magnitudes

higher than x [Gutenberg 1956]. This can be written as:

N = 10a−bM (4.3)

Where N is the number of events greater or equal to M (magnitude),

and a and b are constants. According to the equation, there are more small

aftershocks and fewer large aftershocks.

While the Omori and Gutenberg-Richter laws are useful in describing

general trends of aftershocks they cannot be used for predictive purposes, in

the sense of forecasting the number of aftershocks in a given geographical
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Figure 4.4: Time-ordered spatially-aggregated daily frequency of earthquakes

from January 2010 to November 2015 occurring within the studied area. (Y-

axis clipped at 90)
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area and time ahead of the actual activity. Thus they are no substitute for

a genuine spatiotemporal forecasting scheme.

4.3 Experimental Design

The main objective of the experiments that are conducted in this chapter is

trying to verify if the proposed adaptive framework build local models whose

predictive capability, when taken as a whole, is superior to a global model

approach.

For the purpose of this experiment, a simple dataset is built from the

earthquake catalog that has the 1-step ahead value in time for every spatial

grid zm,n,t+1 as the dependent variable. The features includes the spatial

coordinates (m,n) and the current actual value zm,n,t. The learning scheme

is incremental; for every new incoming data frame Zt+1, new models are
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trained based on the latest data, constrained to just the samples from the

current frame Zt for simplicity. The prediction error for every time step

is recorded and aggregated over the whole testing period for performance

evaluation. Put di�erently, the experiment is basically an exercise of building

autoregressive models of the aftershock count in an temporally incremental

manner.

In this experiment, there are four modes of testing:

• Adaptive Global : The performance of which used as a reference point,

this mode learns new incoming data without taking into account spatial

variance. All data points in a time frame are learned by a single global

model that encompasses the whole spatial input. This model is then

used to predict the next value Zt+1 for every m,n ∈ S.

• Adaptive Local with Hilbert Curve: Employing the methodology laid

out in Section 3.5.2, this mode traverses new incoming data according

to the ranges of the Hilbert curve and feed the data into a concept-drift

detector, carving out local regions over the spatial input space that are

considered homogeneous. Models then are built to learn according to

these cuts.

• Adaptive Local with Scanline: This mode is very similar to the previ-

ous mode, except that the inter-dimensional mapping that it uses is a

simple scanline �ll (Figure 4.5) instead of the Hilbert curve. This is

to investigate if space-�lling curves o�er a measurable advantage com-

pared to standard rasters.

• Adaptive Local with Hilbert Curve and Model Recall : In addition to the

localisation process, data and the models that has been learned by the

system are stored in a repository and every time a new region is identi-

�ed, the system will try to �nd a model that has previously been learned
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Figure 4.5: Illustration of raster scan-line.

with similar statistical properties. Instead of building and learning a

new one, old models are recalled and updated every time a recurring

concept is detected. If the concept is not found in the repository, the

system will simply build a new model. In this experiment, the model

recall is only enabled after 450 time points to give the system enough

models to populate the repository.

The di�erent modes are designed to truly understand the behaviour of

the proposed system. Furthermore, learning algorithms whose characteristics

are well-understood were chosen. Linear Regression (LR) and Multi-layer

Perceptron (MLP) are chosen to observe how both linear and non-linear

models perform when used as local learners.

4.4 Results and Analysis

The result of the predictive accuracy test on the whole dataset is listed in

Table 4.1. Figure 4.6 visualises the N-Test in a graph form. The N-Test error

rate of both approach is compared in Figure 4.7. As we hypothesised, the

local models almost always give better performance in some way compared

to the global model. For example, with LR as the regressor, introducing the

localisation technique gives us a 9% increase in performance in terms of the

PAI, although only a meager 1.1% improvement with the RMSE. This is also
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Table 4.1: The result of the predictive accuracy test on the whole dataset.

Higher is better for PAI, lower is better for N-Test. The model count tracks

the number of local models built by the system.

PAI N-Test
Mdl Count

Avg Stdev MAE RMSE

LR

Global 4.773 9.410 10.226 51.773 754

Local,Hilbert 5.206 9.965 9.973 51.190 1279

Local,Scan 5.553 10.080 10.804 55.275 1755

Local+Recall 4.676 9.289 13.524 58.307 894

MLP

Global 4.487 9.030 14.284 59.837 754

Local,Hilbert 4.954 9.510 13.889 55.815 1095

Local,Scan 5.106 9.559 15.331 65.248 1458

Local+Recall 4.004 8.405 16.220 71.796 734

the case with MLP, with 10.4% better PAI and 6.7% smaller RMSE. This

gain in performance is at the cost of increasing the amount of models that

were trained and used. MLP performed generally worse presumably due to

over-�tting since the data is linear.

Surprisingly, the scanline �ll gives better result in terms of the PAI com-

pared to the Hilbert curve. With 16.3% and 13.8% gain using LR and MLP

respectively, it o�ers quite a respectable increase in performance. However,

it su�ers a signi�cant penalty in regards to the RMSE performance: it in-

creases the error up to 9% with MLP even compared to the global technique.

The gain in PAI and loss in RMSE with scanline are due to the fact that

this method is prone to identifying uninteresting low-activity hotspots which

has low absolute error rate, in�ating its PAI performance. This is why it

is essential that multiple ways of measuring performance are used. It also

produces a less compact representation than the Hilbert space, needing up



Earthquake Aftershocks Modelling Experiment 63

Figure 4.6: Time-ordered daily frequency of earthquakes along the study

period showing the resulting N-Test prediction. (Y-axis clipped at 150)
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to almost 500 extra models built when used with LR. This �nding seems to

further con�rm the locality-preserving property of the Hilbert curve.

With the recurring concept detection and model recall enabled, perfor-

mance generally su�er compared to without. This was expected, as it reuse

old concepts and also the accuracy relies heavily on the appropriateness of

the model selection in the repository. Although it achieved the worst per-

formance overall, it demonstrated the potential to produce a more compact

representation of the data than without recall, needing hundreds fewer mod-

els over the course of the test period. This is indicated by the model count,

i.e. the number of both model creation and update. Since the experiment

run on incremental learning scheme, 754 model updates are made for the

global methods as there are 754 time frame. The performance in this mode

also depends on how many models the system is allowed to learn initially,

which was arbitrarily constrained to t > 450 in this experiment.
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Figure 4.7: A graph displaying the N-Test error rate of both the local and

global approach at every time frame.
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4.4.1 Visualisations

In this section, some selected visualisations that can be obtained from the

experiments are displayed and discussed.

4.4.1.1 Local spaces

Figure 4.8 and 4.9 shows the local partitions that are created with the Hilbert

curve in conjunction with ADWIN for two particular time slices where the

initial aftershocks are unfolding from two di�erent large earthquakes, exhibit-

ing di�ering concepts in space. In the partition �gures, the colour scheme

indicates di�erent regions without implying any ordinality. On the other

hand, Figure 4.10 shows the polygons of local models with the number of

shocks inside each locality. This illustrates the signi�cant variance between

regions carved out by the system. It can be seen from the �gures that be-

cause of the nature of Hilbert curve's traversal, the partitions could be very

fragmented (Figure 4.8) or relatively unfragmented (Figure 4.9) depending

on the spatial distribution of the data. We reckon that time frame 248 seems
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Figure 4.8: The actual data at time frame 248 (left) and the local partitions

created by LR-Local mode with Hilbert curve traversal (right).

Figure 4.9: The actual data at time frame 248 (left) and the local partitions

created by LR-Local mode with Hilbert curve traversal (right).

to be an example of a worst-case scenario for a Hilbert traversal because the

curve passes through the boundaries of the non-zero data multiple times,

forcing the concept-drift detector to divide the area in a very fragmented

way. On the other hand, time frame 419 shows a case where the Hilbert

curve can isolate the region quite well. Despite the seemingly very frag-

mented partitioning, it visually produces a much better outcome compared

to using scanline �ll as depicted by Figure 4.11.
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Figure 4.10: This �gure shows the local spaces made for time frame 248

(left) and 419 (right) with the aggregate number of shocks in each locality to

illustrate the inter-group variance separated by the method.

4.4.1.2 Hotspot Maps

As explained in Section 3.5.3.2, the PAI is a performance index used to

evaluate the e�ectiveness of hotspot outputs made by a predictive model. In

this section, select hotspot maps produced by the experiments are displayed

to give a better sense of what di�erent values of PAI entails visually.

Figure 4.12, 4.13, and 4.14 exhibit example snapshots at time frame 253,

272, and 306 respectively. Figure 4.12 is an example where the predictive

models produced a very good hit rate between the actual spatial distribution

of aftershocks and the predicted hotspot map, scoring very high on the PAI

at 26.78. Figure 4.13 shows a prediction with decent hit rate, but with a

considerable amount of misses as well.

Of interest is Figure 4.14, where the PAI is 0, meaning that at the pre-

dicted hotspots, no aftershocks came forth. However, although it is consid-

ered a total miss by the way PAI is calculated, the map still visually show

useful indications. This demonstrates the imperfection of PAI as a perfor-

mance measure, which is why in evaluating the spatiotemporal data mining

problems, multiple measures have to be used to fully capture the intricacies
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Figure 4.11: The actual data at time frame 248 (left) and the local partitions

created by LR-Local mode with Scanline �ll traversal (right). It produced

vertically separated local regions which do not preserve locality.

of error in spatial and temporal sense.

An additional visualisation of interest is the system's ability to obtain a

projection of concept drifts in the dataset in space and time that is recorded

by the system as it process the data stream continuously adapting to incom-

ing data, which can be seen in Figure 4.15. A series of such slices taken over

time would provide a visualisation of the change dynamics of the system.

4.5 Conclusions

In this chapter, an experiment of modelling spatiotemporal aftershock se-

quence has been presented. As an exploration of the idea of building adap-

tive local models, the experiment's results have shown that the proposed

methodology (Chapter 3) generally performed better and have a higher pre-

dictive power than global models approach. Further analysis of the results

have uncovered interesting observations and visualisations regarding the be-

haviour of both the model and the data. This study also further con�rms the

locality-preserving property of the space-�lling Hilbert curve by comparing
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Figure 4.12: The actual data at time frame 253 (left) and the hotspot

prediction created by LR-Local mode (right). PAI: 26.780. The predicted

hotspots closely follow the true spatial distribution of aftershocks.

it with the simple scanline �ll.
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Figure 4.13: The actual data at time frame 272 (left) and the hotspot pre-

diction created by LR-Local mode (right). PAI: 6.720. The decrease in score

re�ects how the hotspots following the true spatial distribution of aftershocks

more loosely.

Figure 4.14: The actual data at time frame 306 (left) and the hotspot predic-

tion created by LR-Local mode (right). Although the prediction can generally

indicate the spatial distribution of aftershocks, the PAI score is 0 (complete

miss). This demonstrates the importance of using N-test to complement PAI.
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Figure 4.15: A slice projection of the 3-dimensional heatmap visualising

the identi�ed gradually evolving concepts in the dataset over space and time.

The Vertical axis is time and every colour represents a concept.



Chapter 5

The NeuCube Architecture for

Spatiotemporal Data Analysis

5.1 Introduction

This chapter presents a Spiking Neural Networks (SNN)-based Spatiotem-

poral Data Machine (STDM) architecture named NeuCube, �rst proposed

in [Kasabov 2012] and developed at KEDRI by Prof. Nikola Kasabov and

other people in the group. Designed initially to map and model brain signals

captured in the form of EEG streams, the architecture has found its way as

well into several non-brain data case studies such as the prediction of stroke

occurrence with weather variables [Kasabov 2014b]. The organisation of this

chapter is as follows:

• In Sections 5.2 through to 5.8, the theoretical background and the

fundamental principles that serve as the basis of NeuCube and the

conceptual framework of the STDM will be presented. This includes

a primer on biological neurons (Section 5.2) and a brief discussion on

how arti�cial neural networks developed as a mathematical model of

the biological neuron (Section 5.3). It is then followed by an introduc-

tion to SNN (Section 5.4), its data encoding method (Section 5.5), and

its training algorithms (Section 5.6) which includes the Spike-timing-

dependent plasticity (STDP). Finally, the principles of Reservoir Com-
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Figure 5.1: Golgi staining works by soaking brain tissue in silver chromate

solution. Using the stain, a small percentage of the neurons became darker,

revealing their total structures.

puting and the Evolving Connectionist System (ECOS) are laid out in

Section 5.7 and 5.8 respectively.

• Section 5.9 explains the overall architecture of NeuCube, including its

contemporary implementations and applications.

5.2 The Neuron

To better understand how SNN works, it is imperative to have an overview

of the real-world object that it is built or modeled upon, namely the Neural

cells of the brain. The human brain, or more generally the Central Nervous

System (CNS) of animals, are composed primarily of two broad classes of

cells: neurons and glial cells. Neurons, however, are usually considered the

most important cells in the brain since most of information processing seem

to happen in the neural structures.

Humanity has long speculated that the head (and thus the brain) has

something to do with mentality, as attested by the records of symptoms of

brain damage and evidence of cranial surgery performed by the Egyptian,

Mesopotamian, Chinese, Indian, Greek, and Roman civilisations [Finger 2001].

However, not until after the invention of the microscope and the development
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Figure 5.2: Line art drawing of a Neuron. The numbers indicate the struc-

tures that constitute a Neuron: 1. Dendrites, 2. Cell Body, 3. Nucleus, 4.

Axon

of a staining procedure by Camillo Golgi during the late 1890s that studies

of the brain became more sophisticated. The procedure was able to reveal

the intricate structures of individual neurons by using a silver chromate salt

staining (Figure 5.1). This is a breakthrough that led to the conception of

The Neuron Doctrine by Santiago Ramón y Cajal, which is considered to be

the cornerstone of the �eld of Neuroscience [López-Muñoz 2006].

Unlike other types of cells, a neuron's morphology can consist of addi-

tional structures outside the cell body, like dendrites and axons (Figure 5.2).

In the strictest sense, a neuron is a cell that processes and transmits infor-

mation through electrical and chemical signals. This transmission and pro-

cessing of information is possible because neurons are electrically excitable,

maintaining voltage gradients across their membranes by means of metabol-

ically driven ion pumps, which combine with ion channels embedded in the

membrane to generate intracellular-versus-extracellular concentration di�er-

ences of ions such as sodium, potassium, chloride, and calcium. This force



The NeuCube Architecture for Spatiotemporal Data Analysis 74

Figure 5.3: A diagram showing how the Perceptron works.

that generates neural activity is called action potential, and the excitation

manifest itself in the form of electrical spikes [Hodgkin 1952b].

5.3 Arti�cial Neural Networks

As our knowledge of the nervous system improve, scientists from various

backgrounds have come up with mathematical models that tries to simulate

the workings of neurons. For example, neurophysiologist Warren McCul-

loch and mathematician Walter Pitts wrote a paper in 1943 on how neurons

might work by modelling a simple neural network using electrical circuits.

[McCulloch 1943]. However, the McCulloch-Pitts model lacked a mechanism

for learning, which was crucial for it to be usable for AI.

Another breakthrough came in 1949, when the Canadian psychologist

Donald O. Hebb published the theory of Hebbian learning, which he intro-

duced in his classic work The Organization of Behavior [Hebb 1949]. This

then in turn inspired the Perceptron; in 1958, the American psychologist

Frank Rosenblatt came up with a way to make such arti�cial neurons learn

[Rosenblatt 1958].

The Perceptron (Figure 5.3) did not follow Hebb's idea exactly, but having

weights on the inputs allowed for a very simple and intuitive learning scheme:

given a training set of input-output examples the Perceptron should 'learn' a
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function from, for each example increase the weights if the Perceptron output

for that example's input is too low compared to the example, and otherwise

decrease the weights if the output is too high. This procedure is simple, and

produces a simple result: an input linear function (the weighted sum), just

as with linear regression, 'squashed' by a non-linear activation function (the

thresholding of the sum).

Perceptron's simple training algorithm imposed so many limitation on the

learning capability of perceptron. It could not learn multi-class patterns and

because it can only train a single computation unit, it was practically only a

linear function which could not even learn the XOR [Minsky 1969]. After an

AI winter of little progress and unful�lled expectations, people came to realise

that multiple layers of perceptrons can be trained using Backpropagation

algorithm [Rumelhart 1988]. It is such a powerful combination that this

con�guration has been mostly the way ANNs are built until today.

Although biologically inspired, all these methods worked with real values

and thus ignore the inherent temporal aspects of biological neurons, which

works by processing electrical signals travelling through its synapses in the

form of spike trains. In the following sections, more biologically plausible

models belonging to a next-generation class of arti�cial neurons called SNN

will be discussed.

5.4 Spiking Neural Networks

5.4.1 The Hodgkin-Huxley Neuron Model

The model described by Alan Lloyd Hodgkin and Andrew Huxley in 1952 is

considered the �rst scienti�c model of how action potentials are initiated and

propagated in a spiking neuron [Hodgkin 1952b]. The paper was the �nale

of a series of �ve papers in the same journal describing their experiment with
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Figure 5.4: Hodgkin-Huxley type models represent the biophysical charac-

teristics of cell membranes. The lipid nilayer is represented as a Capacitance

(Cm). Voltage-gated and leak ion channels are represented as by nonlinear

(gn) and linear (gL conductances, respectively. The electrochemical gradients

driving the �ow of ions are represented by batteries (E), and ion pumps and

exchanges are represented by current sources (Ip). Image: Behrang Amini.

an axon from a Giant Squid [Hodgkin 1952a, Hodgkin 1952c, Hodgkin 1952d,

Hodgkin 1952e].

Figure 5.4 describes the famous Hodgkin-Huxley neuron model in the

form of an electrical circuit schematic diagram. Capacitors are used to model

the charge storage capacity of the cell membrane, and batteries are used to

represent the electrochemical potentials established by di�ering intra- and

extracellular ion concentrations [Nelson 2004].

The model can be mathematically described as:

IInward = Cm
dV

dt
+ INa + Ik + Il (5.1)

where INa represent sodium,Ik potassium, and Il leakage ions. Each cur-

rent can be determined by a driving force which is represented by a voltage

di�erence and a permeability coe�cient. Conductance is the inverse of resis-

tance and equations is derived using Ohm's law (V = IR)

INa = gNa(E − ENa) (5.2)
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Ik = gk(E − Ek) (5.3)

Il = gl(E − El) (5.4)

where gNa and gk are both functions of time and membrane potential.

While ENa, Ek, El, Cm and gl are all constants that are determined via

experimentation.

The model can further be expand by adding the following relationships:

INa = gNa(V − VNa) = gNa(ENa − ER) (5.5)

Ik = gNa(V − Vk) = gk(Ek − ER) (5.6)

Il = gNa(V − VNa) = gNa(El − ER) (5.7)

V = E − ER (5.8)

where ER is the resting potential. The simpli�cations made in the Hodgkin-

Huxley model is that the Ionic currents can be modeled with accuracy by

�rst order di�erential equations. the equations that govern n,m, and h are

described:

dn

dt
= αn(1− n)− βnn (5.9)

dm

dt
= αm(1− n)− βmm (5.10)

dh

dt
= αh(1− n)− βhh (5.11)

where n is a dimensionless variable that varies from 0 to 1, m is the pro-

portion of activating carrier molecules (ion channels) and h is the proportion

of inactivation carrier molecules (ion channels). While α and β are rate con-

stants that are similar to the rate constants for the potassium conductance.
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Figure 5.5: Schematic diagram of the integrate-and-�re model. The basic

circuit is the module inside the dashed circle on the right-hand side. A current

I(t) charges the RC circuit. The voltage u(t) across the capacitance (points)

is compared to a threshold ϑ. If u(t) = ϑ at time ti(f) an output pulse δ(t

- ti(f)) is generated. Left part: A presynaptic spike δ(t - tj(f)) is low-pass

�ltered at the synapse and generates an input current pulse α(t - tj(f)).

5.4.2 Leaky Integrate and Fire Model

The Hodgkin-Huxley model can model and replicate electrophysiological

measurements very accurately and its parameter can be easily evaluated

from the experiments. However, the model is highly complex and makes it

too computationally expensive for large network of spiking neurons. This sec-

tion discusses the Leaky Integrate-and-Fire (LIF) model, which is a type of

spiking neurons popular and widely used because it preserves a large part of

the biological realism in a computationally inexpensive way [Gerstner 2002].

The basic circuit of an integrate-and-�re model consists of a capacitor

C in parallel with a resistor R driven by a current I(t) (Figure 5.5); a LIF

neuron is a simpli�ed Hodgkin-Huxley model where all the ion channels are

represented with a single current [Stein 1967]. Considering the Ohm's law

and the Equation 5.1, we can derive:

It −
Vm(t)

Rm

= Cm
dVm(t)

dt
(5.12)
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Figure 5.6: The characteristic of LIF neurons where the membrane poten-

tial, increase with every input spike at a time t multiplied to the synaptic

e�cacy (strength) until it reaches a threshold and emit an output spike then

the membrane potential is reset to initial state.

where Rm is the membrane resistance. This forces the input current to

exceed some threshold Ith = Vth/Rm in order to cause the cell to �re, else it

will simply leak out any change in potential. We multiply Equation 5.12 by

R and introduce the time constant τm = RC as the 'leaky integrator'. This

yields the standard form:

τm
du
dt

= −u(t) +RI(t) (5.13)

We refer to u as the membrane potential and to τm as the membrane

time constant of the neuron. These types of arti�cial neuron has exhibited

a behaviour very close to the biological counterparts; Figure 5.6 showed the

characteristic of the membrane potential of LIF neurons.

5.5 Spike Encoding

Although it is known that neural cells use action potentials to encode and

transmit information, there has been no consensus as to the exact way bi-

ological neuron encodes and decodes information from and into conceptual

element [Bishop 1999]. As the information we are working with computation-

ally are mostly represented in real value, the information must be encoded
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into trains of spikes to work with SNN. The number of possible encoding

schemes are theoretically numerous. These methods can be grouped into

two main approaches, which are rate and temporal coding. Whether neu-

rons use rate coding or temporal coding is still a topic of intense debate.

5.5.1 Rate coding

This encoding method counts the average number of spikes within a speci�c

time window without taking into account the exact timing of the spikes.

Rate coding has been shown to be the mechanism by which sensory neu-

rons encode how much force is applied on muscle tissues [Adrian 1926]. The

rate is generally calculated by dividing the number of spikes emitted during

a time window. There are special forms of this general formula for calcu-

lating the average rate over multiple neurons, di�ering time-windows, and

experimentations [Gerstner 2002].

Rate coding is often considered a traditional coding scheme due to its

simplistic assumption that most, if not all, information about the stimulus

is contained in the �ring rate of the neuron. It is also relatively easy to

measure experimentally. For decades after it was discovered, measurement

of �ring rates became a standard tool for describing the properties of sensory

or cortical neurons. However, this approach neglects all the information

possibly contained in the temporal structure of the spikes. Experimental

evidence has come about suggesting that a straightforward rate coding may

be too simplistic to describe more advanced neuronal activities, especially in

the brain [Stein 2005].

5.5.2 Temporal coding

Neural codes are often said to be temporal when precise spike timing or high-

frequency �ring-rate �uctuations are found to carry information [Dayan 2003].
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Figure 5.7: Rank Order Coding [Thorpe 1998]

Temporal coding considers the precise spike timing as important, and that

the �uctuations of the spiking order carry information.

Temporal codes make use of the time-related features of the spiking ac-

tivity that are not described by the �ring rate. Examples of temporal codes

include time to �rst spike after the stimulus onset, spike randomness, or

precisely timed groups of spikes [Kostal 2007].

An example of method based on temporal coding is the Rank Order

Coding (ROC). ROC encodes information by using the order of the �ring time

[Thorpe 1998]. ROC considers only on the order in which the spikes arrive,

not the precise timing of information. For example, for four neurons, where

N3 < N1 < N4 < N2, the rank assigned to each neuron is therefore Rank 0

= N2, Rank 1 = N4, Rank 2 = N1 and Rank 3 = N3 as illustrated in Figure

5.7. ROC is very e�ective in modelling audio and visual systems and has

been tested in several applications such as visual recognition [Wysoski 2006],

audio recognition [Wysoski 2007] and speech recognition [Loiselle 2005].

Another example of encoding scheme that make use of the temporal prop-

erties of spike trains to encode information is the Phase-of-�ring Coding. This

code supplements the rate code with a time reference based on oscillations.

This means that neuronal spike trains can encode information in the phase

of a pulse with respect to the background oscillation [Gerstner 2002]. The

biological basis for this scheme is that it has been shown that neurons in some
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cortical sensory areas encode stimuli in terms of their spike times relative to

the phase of ongoing network �uctuations, rather than only in terms of their

spike count [Montemurro 2008].

5.5.3 Population coding

Population coding is a method to represent information regarding stimuli by

aggregating the joint activities of a number of neurons. In population coding,

each neuron has a distribution of responses over some set of inputs, and the

responses of many neurons may be combined to determine some value about

the inputs. It accommodates the essential features of neural coding and is

well-formulated for theoretic analysis [Wu 2006a].

An example of this approach is called the Position Coding, which in-

volves neurons with a Gaussian tuning curve whose means vary linearly with

the stimulus intensity, meaning that the neuron responds most strongly (in

terms of spikes per second) to a stimulus near the mean [Bohte 2002]. This

Gaussian activation function or receptive �eld is shown in Eq. 5.14.

g(x) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)x2 (5.14)

This function is used to calculate the �ring time for the input neuron.

The mean µi and the width σ are calculated with Eq. 5.15 and Eq. 5.16,

respectively.

µi = Imin = +
2i− 3

2
· Imax − Imin

M − 2
(5.15)

σ =
1

β
· Imax − Imin

M − 2
(5.16)

Imin and Imin are the minimum and maximum range of input variable

and β coe�cient controls the width of each Gaussian receptive �eld, taking

any real value between 1.0 and 2.0.
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5.6 SNN Learning Algorithm

There exist various ways of training an SNN for di�erent learning modes

(supervised, reinforcement, unsupervised, etc.). In this research, we are in-

terested in the unsupervised learning algorithm called Spike-Time Dependent

Plasticity (STDP).

5.6.1 STDP

As an algorithm that operate according to the Hebbian type of learning (as

mentioned in Section 5.3), it works by modifying the synaptic activity based

on global competition (i.e. between neurons' pre- and post-synaptic action

potentials) [Hebb 1949]. With STDP, repeated presynaptic spike arrival a

few milliseconds before postsynaptic action potentials leads in many synapse

types to long-term potentiation (LTP) of the synapses, whereas repeated

spike arrival after postsynaptic spikes leads to long-term depression (LTD)

of the same synapse [Markram 1997].

It has been shown that STDP was observed in more than 20 di�erent

types of synapses from insects to mammals, and from striatum to neocor-

tex [Feldman 2012]. Its cellular basis is increasingly understood, and it has

already been widely utilised in computational models of neural network plas-

ticity and learning.

STDP can be mathematically described as calculating the weight change

∆wj of a synapse from a presynaptic neuron j depends on the relative timing

between presynaptic spike arrivals and postsynaptic spikes. Thus the total

weight change is described as [Kempter 1999, Gerstner 1996]:

∆wj =
N∑
f=1

N∑
n=1

W (tni − t
f
j ) (5.17)

where W (x) denotes one of the STDP functions, the pre-synaptic spike
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Figure 5.8: Spike-Timing Dependent Plasticity (schematic): The STDP

function shows the change of synaptic connections as a function of the relative

timing of pre- and postsynaptic spikes

arrival times at synapse j by tfj where f = 1, 2, 3, ... counts the pre-synaptic

spikes and the post-synaptic spike arrival times at synapse iby tni with n =

1, 2, 3, ... count the post-synaptic spikes.

An example of STDP function is:

W (x) =

 A+exp(−x/τ+) , for x > 0

−A−exp(x/τ−) , for x < 0
(5.18)

which has been used in �ts to experimental data [Zhang 1998]. The pa-

rameters A+ and A− may depend on the current value of the synaptic weight

wj . The time constants are on the order of τ+ = 10ms and τ− = 10ms.

Pseudo-code for STDP learning is as follows:
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Algorithm 5.1 The STDP weight updating algorithm
INPUT: Weight vectors of presynaptic neuron i

for j in input_size do

while there are post-spikes for neuron j do

Increment ∆wij using the pre-synaptic spikes at time tpostj

end while

end for

while there are pre-spikes for neuron i do

for j in input_size do

Decrement ∆wij using the pre-synaptic spikes at time tprei

end for

end while

for j in input_size do

Apply ∆wij to the synapse

end for

5.7 Reservoir Computing

Reservoir computing is a neural network based computational framework for

computation where the input signals are fed into a dynamical system called

the reservoir, resulting in mapping of the input to a higher dimension. Then

the readout function is used to read the states / dynamics of the reservoir for

imposing an input output mapping [Schrauwen 2007]. Figure 5.9 provides an

illustration of this general principle.

Reservoir computing is an umbrella term which includes a number of inde-

pendently found approaches based on this fundamental idea, namely Liquid

State Machines, Echo State Networks, Backpropagation Decorrelation and

Temporal Recurrent Networks. The reservoir comprises a group of recur-

rently connected neurons. The connectivity is generally random, and the

units are typically nonlinear. On the whole, the activity in the reservoir is
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Figure 5.9: The general schematic diagram of reservoir computing princi-

ple.

driven by the input and is also in�uenced by the past.

Figure 5.10 illustrates the structure of a Liquid State Machine (LSM),

which transforms input streams u(·) into output streams y(t) through a liquid

�lter LM . The liquid state xM(t) is a part of the internal state of the reservoir

at time t which is visible to an external observer. During LSM simulation, the

synaptic weights, neurons connectivity and parameters are prede�ned. The

continuous stream of input u(·) will cause neurons to respond and generate

the liquid spiking activities. The state of the Liquid x(t) can be recorded at

di�erent time points, which is simply the result of mapping the input into

a higher-dimensional space. This state is then passed to the memoryless

readout fM that will transform into output v(t).

LSM o�ers an improvement over traditional arti�cial neural networks in

regards to its biological plausibility. It is argued to be more similar to actual

neurons because the neural circuits are not hard coded to perform a speci�c

task, and continuous time inputs are handled naturally [Hazan 2012]. Its

executions can run on various time scales and multiple computations can be

performed on the same network.
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Figure 5.10: Architecture of an LSM. A function of time (time series) u(·)

is injected as input into the liquid �lter LM , creating at time t the liquid state

xM(t), which is transformed by a memoryless readout map fM to generate

an output y(t) [Maass 2002].

5.8 Evolving Connectionist System (ECOS)

The ECOS is a set of principles that inspired a family of constructive arti-

�cial neural-networks �rst proposed in [Kasabov 1998b], on which NeuCube

is also based on. It draws analogies from human brains in that it can be de-

scribed as intelligence, incremental learning, and knowledge representation

systems that are adaptive and evolving based on continuous incoming data

[Kasabov 2009]. The main principles or requirements can be enumerated as

such:

1. fast learning from a large amount of data;

2. real-time, incremental adaptation to new data;

3. an open structure, where new features (either inputs or outputs) can

be added;

4. able to reasonably keep track of and retrieve data that have been seen

previously;
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5. continuous improvement throughout the lifetime of the system; (i.e.,

evolving in this context as opposed to Evolutionary Algorithms)

6. able to analyse and explain themselves through, for example, rule ex-

traction;

7. able to represent spatial and temporal elements of data

These principles have inspired algorithms such as EFuNN [Kasabov 1998a],

DENFIS [Kasabov 2007], and also SNN-based algorithms such as the Evolv-

ing SNN (eSNN) [Wysoski 2006, Wysoski 2010] and further to its latest iter-

ation the Dynamic Evolving SNN (deSNN) [Kasabov 2013b], which is used

extensively with the current implementation of NeuCube. A review of the

ECOS principle, several of its implementations, and meta-study of its appli-

cations can be found in [Watts 2009].

5.9 The NeuCube Architecture

In this section, a Spatiotemporal Data Machine developed by Professor Nikola

Kasabov and the team at KEDRI is explained. NeuCube is a modular archi-

tecture, integrating several di�erent modules that each serve a purpose for

spatiotemporal data analysis[Kasabov 2012, Kasabov 2014a]. As illustrated

in Figure 5.11, the NeuCube mainly comprises of :

1. An input transformation and encoding module.

2. A SNN reservoir de�ned in 3-dimensional structure.

3. A classi�er as the readout mechanism.

4. An optional Gene Regulatory Network for �ne-tuning and optimisation.
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Figure 5.11: A schematic diagram of a NeuCube architecture for brain data

modelling [Kasabov 2012].

The design of NeuCube is modular and di�erent encoding algorithms can

be used to obtain the spike trains from the time-series input. For example,

a simple thresholding algorithm is available [Dhoble 2012], along with Ben

Spiker Algorithm [Schrauwen 2003].

The three-dimensional cube is implemented with a population of LIF

neurons separated by a small-world connectivity. The encoded spike trains

are fed into the cube through input neurons whose spatial location have been

pre-determined according to prior knowledge of the data. This is how the

spatial information is encoded in the reservoir. For example, the original

implementation of NeuCube follows the Talairach coordinate system with 14

input neurons that follows the spatial distribution of the channels on Emotiv

EEG headsets (Figure 5.12).

NeuCube employs a two-pass learning phases:

1. Unsupervised learning: This process is where all the training data is

presented to the SNN cube and the STDP learning algorithm is used

to update the randomly initialised connection weights inside the reser-
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Figure 5.12: The spatial distribution of the EEG nodes on an Emotiv EEG

headset (left) and the location of the input neurons in NeuCube's reservoir

network (right).

voir according to Hebbian learning rules. The cube learns to activate

the same groups of spiking neurons when similar stimuli is present

in the input spike train, also known as the Polychronisation e�ect

[Izhikevich 2006]. After learning, the �nal connectivity and spiking

activity generated in the network can be analysed, interpreted, and

visualised.

2. Supervised learning: After the cube has gone through the unsupervised

training phase, the same data used in the previous phase then again

propagated through the trained reservoir. The state of the cube as

the data is passed through then can be learned by a classi�er. In the

standard implementation, the algorithm deSNN [Kasabov 2013b] can

be used to evolve classifying output neurons.

Most of the computationally intensive operations can be theoretically

executed on specialised hardware like the GPU and even SNN-speci�c mi-

croprocessors. For example, NeuCube has been implemented in PyNN that
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Figure 5.13: Thresholding method of encoding continuous time-series data

into a spike train (left) and the reconstruction of the signal from the spike

train (right)[Kasabov 2014b].

enabled it to run on SpiNNaker boards, an ARM-based neuromorphic hard-

ware [Scott 2013] that uses very small energy to simulate the SNN.

5.9.1 Input Data Encoding

NeuCube works with trains of spikes, and therefore continuous value data

needs to be transformed into spike trains. There exist several di�erent al-

gorithms whose function is to do this transformation. The one used in this

research is the thresholding method, where the encoding is based on cal-

culating the di�erence between two consecutive values of the same input

variable over time. This makes it suitable to work with stream input data

[Kasabov 2014c]. It works by performing a bi-direction thresholding of the

signal gradient with respect of time d/dt. For a signal f(t), the mean m and

standard deviation s of the gradient df/dt is calculated, then the threshold

is set to:

θ = m+ αs (5.19)

where α is a used-de�ned parameter to control the spike rate. Figure 5.13

illustrates how a spike train is obtained from a signal and how the signal can
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Figure 5.14: Sine wave converted using BSA. The original sine wave is

plotted in dotted line, and the converted version in solid line. The lower plot

visualises the spike train. [Schrauwen 2003].

be reconstructed back, showing that the spike train is a valid representation

of the original signal.

One of other encoding methods is the Ben's Spiker Algorithm (BSA)

[Schrauwen 2003]. This method is an extension of the Hough Spiker Al-

gorithm [Hough 1999]. Both algorithms utilise a convolution/deconvolution

�lter that was optimised using a genetic algorithm to minimise the error in

the encoding and decoding process [Glackin 2012]. BSA has been shown to

be e�ective for analysing EEG-based brain data [Nuntalid 2011]. Figure 5.14

gives a visual exempli�cation of the input and output of BSA, showing the

reconstructed wave compared to the source sine wave and the spike train

used to encode signal.

When BSA converts spike trains to analog values, it uses a linear �lter.

BSA requires that the decoding �lter has a �nite impulse response (FIR
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�lter). This is because it uses the Stimulus Estimation, which estimates

the stimulus of a biological neuron by applying a linear �lter. The estimate

stimulus sest can be written as:

Sest = (h ? x)(t) =

∫ +∞

−∞
x(t− τ)h(τ)dτ =

N∑
k=1

h(t− tk) (5.20)

where the spike train of the neuron x(t) is given by

x(t) =
N∑
k=1

δ(t− tk) (5.21)

with tk denoting the set of �ring times of the neuron, and h(t) the impulse

response of a linear �lter.

5.9.2 SNN Reservoir

In the heart of NeuCube is a recurrent three-dimensional SNN reservoir. The

reservoir used in NeuCube can be considered a special form of LSM as dis-

cussed in Section 5.7, and is arguably the most complex component of the

framework. The neurons used in this research is the leaky-integrate-and-�re

(LIF) model (Section 5.4) with recurrent connection. The learning inside

the reservoir is done in an unsupervised manner using the Spike-Time De-

pendent Plasticity (STDP) algorithm (Section 5.6). This algorithm enables

a meaningful construction of connections within the reservoir, as opposed

to the random, �xed one in LSM. The cube accumulates temporal informa-

tion of all input spike trains and transform them into a high-dimensional

intermediate states or trajectories that can be measured over time.

During the cube's initialisation, the connectivity between neurons is con-

structed based on the small-world network principle. This is to re�ect the

biological observation in which nearby neurons are connected with a higher

probability than to those who are far away [Sporns 2004].
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Figure 5.15: Evolving SNN (eSNN) for classi�cation [Kasabov 2007].

5.9.3 Evolving Output Classi�cation

The activity in the SNN cube when a data sample passes through it will be

entered into an evolving SNN classi�er which was trained in the supervised

learning phase to be classi�ed into particular cases. Several evolving SNN

classi�ers can be used with NeuCube. In this research the classi�er used is

the Dynamic Evolving SNN (deSNN) [Kasabov 2013b], which in turn was

inspired by the eSNN [Wysoski 2006].

Figure 5.15 describes the schematic diagram of eSNN. It uses the Rank

Order (RO) learning rule to initialise the synaptic weights based on the order

of the coming spikes and then STDP for the following spikes. For every new

input sample, a new neuron is dynamically allocated and connected to the

input neurons. The initial connections are established based on the RO

rule. These new neurons are the centroids of the clusters in regards to the

synaptic weights. For each training sample, only a neuron with the highest

postsynaptic potential (PSP) has its weight updated. The PSP of neuron i

at time t is:

PSP (i, t) =
∑

modorder(j)wj,i (5.22)
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where:

• mod is a modulation factor;

• j is the index for incoming spike;

• wj,i is the corresponding synaptic weight;

• order(j) represents the rank of the spike arriving from all synapses to

neuron i at the synapse j, i.

The change in synaptic weight is achieved through a simple rule:

∆Wj,i = modorder(j,i(t)) (5.23)

Once a synaptic weight wj,i is initialised, based on the �rst spike at the

synapse j, the synapse becomes dynamic and adjusts its weight through the

SDSP algorithm. It increases its value with a small positive value (posi-

tive drift parameter) at any time t a new spike arrives at this synapse and

decreases its value (a negative drift parameter) if there is no spike at this

time.

∆Wj,i(t) = ej ·D (5.24)

where: ej(t) = 1 if there is a consecutive spike at synapse j at time t

during the presentation of the learned pattern by the output neuron i and

(−1) otherwise.

After the whole training set is presented, the threshold of the neuron ni

is de�ned to make this neuron spike when this or a similar spatio-temporal

pattern is presented again in the recall mode. The threshold is calculated as

a fraction (C) of the total PSP , calculated as:

PSPmax =
m∑
j=1

T∑
t=1

(modorder(j,i(t))wj,i(t)) (5.25)



The NeuCube Architecture for Spatiotemporal Data Analysis 96

PSPth = C · PSPmax (5.26)

The pseudo-code to this algorithm is:

Algorithm 5.2 The eSNN training algorithm

INPUT: Spike trains, eSNN Parameters (Mod, Sim, C)

Initial neuron repository R

for each input i belonging to the same output class do

Create an output neuron and compute the connection weights (Eq. 5.23)

Calculate PSPmax (Eq. 5.25)

Calculate PSPth (Eq. 5.26)

Calculate weight vectors similarity between new neurons and existent

neurons

if similarity > PSPth then

Merge new neuron with the most similar pre-existing neuron

else

Add the neuron to the repository

end if

end for

Instead of STDP, the deSNN algorithm [Kasabov 2013b] implement spike-

dependent synaptic plasticity (SDSP) learning rule [Fusi 2000] where a small

drift of a synaptic weight is used to increase the weight if there is a spike, or

decrease it if there is no spike, at each of time moments of simulation.

5.9.4 Applications

The NeuCube architecture has found many applications with various modes

of brain data and non-brain spatiotemporal data alike [Kasabov 2016]:
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• EEG Analysis: EEG data contains temporal, spatial, and spectral in-

formation that is di�cult to truly explore using standard statistical

or ML techniques. Though these techniques are often used to pro-

cess STBD, they lack the ability to classify di�erences in neurological

dynamics that occur over time, to identify the functional brain ar-

eas involved, and to quantify the information involved. NeuCube has

successfully been used for the study of 6-channel EEG data recorded

from the scalp of seven subjects performing di�erent mental tasks

[Kasabov 2015a]. This research identi�es that the NeuCube is able

to classify and analyse changes in functional brain activities. This

is signi�cant, as it allows for the identi�cation of the appearance of

mild cognitive impairment (MCI) to stage its degeneration towards

Alzheimer's Disease (AD).

• fMRI Analysis: Recently there has been a huge interest in using func-

tional magnetic resonance imaging (fMRI) to understand, analyse and

predict behaviour and cognition. The ability of fMRI to sample high

resolution spatial information over time has been successfully used in

correlating high-resolution neural activity with behaviour. In con-

trast to statistical analysis and traditional machine learning meth-

ods, NeuCube is a rich computational model for fMRI data analysis

[Doborjeh 2014]. This method can be applied to fMRI data across

areas of brain study and applications [Doborjeh 2015].

• Personalised Modelling: A feasibility study on the applicability of Neu-

Cube to make personalised models to predict the occurrence of stroke

was published [Othman 2014] where the dataset was taken from Auck-

land Regional Community Stroke Study population.

• Ecological Modelling: The NeuCube architecture has been used to
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model and predict the population of a harmful species, Rophalosiphum

padi, in Southern New Zealand based on weather and climate factors

[Tu 2014].

5.10 Conclusions

In this chapter, an STDM called NeuCube has been described. It is based

on SNN, a third-generation arti�cial neural networks that works with spikes

as its internal representation of data. With the three-dimensional reservoir

trained with the STDP algorithm, it is able to learn complex patterns from

various kind of spatiotemporal data. In Chapter 6, the same architecture

will be used to work with spatiotemporal seismicity data.



Chapter 6

Seismogram Analysis for Event

Prediction Experiment

This chapter presents the application of NeuCube to analyse seismograph

readings collected from di�erent sites within a certain geographical area to

learn and predict the occurrence of strong earthquakes. The SNN-based

NeuCube architecture employs a reservoir computing paradigm capable of

capturing the spatial and temporal relationships embedded in the data. Ex-

periments on data collected from the Canterbury region of New Zealand and

comparison with other computational intelligence methods indicates that this

novel approach of analysing seismic data is promising and warrants further

examination and research.

6.1 Introduction

Earthquake prediction is a challenging and compelling problem, especially

in New Zealand. Several high-intensity earthquakes have struck highly pop-

ulated regions of Canterbury and Wellington and caused a high number of

casualties and loss within the last decade. The immense capacity for destruc-

tion of earthquakes prompts for the ability to predict, within a reasonable

time horizon, their occurrence so that proactive actions could be taken to

minimize damage. However, earthquake prediction in general remains a con-

troversial topic and there seems to be an overly pessimistic outlook on its
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success rate, especially in modern times. This is most likely a product of dis-

appointment from a series of failed attempts at predicting earthquakes since

the height of this �eld in the 1970s [Jordan 2006], with some researchers

even going to the extent of abandoning the idea of prediction [Geller 1997].

Despite a track record of modest success in earthquake prediction, a copi-

ous amount of geological data is continuously being collected and analysed.

This research will try to push the boundaries and investigate the feasibility

of using machine learning approaches in predicting the incidence of strong

earthquakes using the seismic time series data recorded from various seis-

mometer sites as the precursor.

6.2 Research in Earthquake Prediction

6.2.1 Earthquake Precursors

The basic premise on which earthquake prediction techniques stand is that

there are some phenomena, called precursors, which consistently occur be-

fore an earthquake. One of the most prominent approaches in this area

is the measurement of anomalies in the di�erent parts of the atmosphere

which seems to change due to seismogenic e�ects [Pulinets 2003], for exam-

ple, the temperature [Oyama 2008] and density [Liu 2001] of electrons in the

ionosphere. Other approaches extend from measuring the amount of radon

emissions in the soil and ground water [Ghosh 2009] and by observing the

behavior of animals such as mice [Li 2009] and common toad [Grant 2010].

Lately there have been several studies that suggest that the existence of

some signatures in the seismograph readings prior to the occurrence of earth-

quakes. The possibility of using high frequency components of micro-seismic

noise readings has been studied in [Sovi¢ 2013], which reports a character-

istic change one or two days before an earthquake. Another study reports
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that pulsed vibrations are recorded between 5 to 10 days before earthquakes

around Russia [Sobolev 2006]. Another study done with the Tottori earth-

quake in the year 2000 also revealed that there are seismic quiescence anoma-

lies before the earthquake [Huang 2006], which are also observed leading to

the massive Taiwan Chi-Chi earthquake in 1999 [Wu 2006b]. Based on these

literatures there is a scienti�c basis in using the readings of seismographs as

precursors for short-term prediction of strong earthquakes. The challenge is

to develop methods that can learn from the patterns that are hidden in the

intricate interactions between spatial and temporal components.

6.2.2 Computational Intelligence Methods for Earth-

quake Prediction

Despite various precursor variables having been proposed, the application of

Computational Intelligence methods to deal with the problem of earthquake

prediction has unfortunately been scarce.

A method employing arti�cial neural networks has been developed to

predict earthquakes in Chile, by using the b-value, the Bath's law, and

the Omuri-Utsu's law as input parameters [Reyes 2013]. This promising

research built and used multiple models corresponding to the geographical

regions or cities it wanted to analyse, and since classical arti�cial neural net-

works are not suitable to work with the temporal aspect of the data, it em-

ploys several fundamental geophysics laws to extract the input features from

the available time-variant data. A study by the same authors using similar

technique has also been done for earthquakes around the Iberian Peninsula

[Morales-Esteban 2013].

Another approach using an adaptive neural fuzzy inference system (AN-

FIS) has also been proposed, using location of the earthquake as the input

and the magnitude as the output on the assumption that the system will
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Figure 6.1: Simpli�ed block diagram of the NeuCube Architecture

tune itself to model the principle of conservation of energy and momentum of

annual earthquakes [Shibli 2011]. Another ANFIS-based approach was pro-

posed by [Zamani 2013] in which historical earthquake data is mapped into

two kinds of input: spatial and temporal, which are analysed separately. Yet

another ANFIS based approach was proposed by [Joelianto 2008] in which

the inference system is used to predict a time-series of earthquake parame-

ters of the Sunda region in Indonesia. A rule-based system for earthquake

prediction was also proposed by [Ikram 2014] which claims 100% accuracy

within 15 hours, although the spatial resolution of the prediction area is low,

covering areas as large as a hemisphere.

Almost all of the previous research in employing CI methods seem to

extract features such as the b-value (Gutenberg-Richter law), Bath's law,

Omori's law and so forth from a historical sequence of previous earthquakes

in a region. None in particular proposed the use of multiple time series

readings of seismic activities prior to the earthquakes to capture predictive

spatiotemporal patterns. In this research, we investigate the e�ectiveness of

a spatiotemporal modelling approach with SNN for prediction, based on the

seismicity prior to the occurrence of the earthquake.
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6.3 NeuCube for Spatiotemporal Data

The classi�er system used in this paper is the NeuCube SNN architecture

which has been proposed by Kasabov [Kasabov 2014c]. SNN are the third-

generation arti�cial neural networks that can simulate the workings of neu-

rons more closely to the biological counterparts. Designed initially to map

and model brain signals captured in the form of EEG, the NeuCube architec-

ture has found its way as well into several non-brain data case studies such as

the prediction of stroke occurrence with weather variables [Kasabov 2014b,

Kasabov 2015c].

NeuCube can be considered as a special case of a Liquid State Machine,

with the input neurons mapped in the reservoir according to the spatial

distribution of the actual input and a readout mechanism employing SNN-

based classi�ers as output neurons [Schliebs 2013]. In case of analysing brain

EEG data, the input neurons correspond to the spatial location of the nodes

on the scalp. For other applications, the input neurons can be mapped either

automatically or according to the characteristic of the data [Kasabov 2015c].

For example, [Kasabov 2015b] mapped fMRI data to the cube based on the

voxel coordinates of the images.

The basic components of this architecture is depicted in Fig. 6.1. Input

data is transformed into spike trains using encoding algorithms like simple

thresholding or Ben's Spiker Algorithm (BSA) introduced in [Schrauwen 2003].

These spike trains are then fed into the cube (SNNc) in an unsupervised learn-

ing procedure so that the reservoir's network can learn to activate the same

groups of spiking neurons when similar spatiotemporal input stimuli are pre-

sented. After the unsupervised training phase, the same data is propagated

again and output neurons are evolved to learn to classify the SNNc activity

into prede�ned classes. Di�erent SNN methods can be used to learn and clas-

sify spiking patterns from the SNNc, including the deSNN [Kasabov 2013b].
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Figure 6.2: Schematic diagram of a seismometer. Ground motion causes

the base and frame of the seismometer to oscillate. The mass, suspended

by the spring and boom, tends to stay in one place because of inertia. The

relative motion of the base as compared to the mass is recorded as the output

of the seismometer. Image: Larry Braile, Purdue Uni.

6.4 The Seismometer

The spatiotemporal data that is used in this research is obtained from seis-

mometers, which are instruments that measure motion of the ground, in-

cluding those of seismic waves generated by earthquakes, volcanic eruptions,

and other seismic sources. The fundamental observations used in seismology

(the study of earthquakes) are recorded with seismometers in the form of

seismograms - a record of the ground motion at a speci�c location. Figure

6.2 depicts a simple diagram that explains the working mechanism of electric

seismometers.
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Figure 6.3: The New Zealand National Seismograph Network consists of

primary sites located at approximately 100 km spacing, with extra regional

sites established at places of geophysical signi�cance.

6.4.1 The GeoNet Project & The New Zealand National

Seismograph Network

In 2001, GNS Science, a New Zealand government-owned research institute,

received funding from the New Zealand Earthquake Commission (EQC), a

New Zealand government mandated natural disasters insurer, to develop

GeoNet as a non-pro�t 'public good' initiative to enhance New Zealand's

ability to respond to and prepare for natural hazards such as earthquakes,

volcanic eruptions, and tsunamis [Petersen 2011]. The GeoNet project uses

a wide variety of sensing equipment located throughout New Zealand.

Seismographs are used to measure accurately the magnitude, location

and other characteristics of earthquakes. The New Zealand National Seis-

mograph Network is made up of 51 backbone stations located throughout the

country and o�shore islands to provide a uniform location and data collection

capability. The sites consists of:
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• Guralp CMG3-ESP or Streckeisen STS-2 broadband seismometers;

• Kinemetrics Episensor strong-motion accelerometers;

• Quanterra Q330 24-bit data loggers;

• High-speed data connections using standard internet protocols (TCP/IP)

to the data centres.

These sites are spread out all across New Zealand, as depicted in Figure

6.3. This spatiotemporal nature of the data is of interest in this research.

Much like how EEG nodes record the electrical activity of the neuron sensed

on the scalp, these sites are recording the seismic activity of the earth cap-

tured on the surface and might contain complex spatiotemporal information

that we can recover when the appropriate tools are employed.

6.5 Experiment: Very Large Earthquakes Pre-

diction

The experiments in this research was designed to investigate whether by

building a model to learn from seismometer readings preceding a seismic

event, the imminence of large earthquakes can be predicted. This question

can be formulated and tested as a binary classi�cation problem of di�eren-

tiating a positive class from a negative class. This experiment serves as a

feasibility study to test the potential of NeuCube working with seismogram

datasets.

6.5.1 Experiment Design

In this �rst experiment, instances in the positive class corresponded to earth-

quakes which are historically notable, felt by the general population in the
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region and classi�ed as strong or severe in intensity by GNS Science New

Zealand as displayed in the GeoNet website (www.geonet.org.nz). GeoNet

provides access to extensive data recorded by sensors belonging to the New

Zealand National Seismograph Network [Petersen 2011]. As in [Reyes 2013],

the location of the earthquake is considered to be known since the model was

built for a speci�c geographical area, namely the region of Canterbury in the

South Island of New Zealand in which the city of Christchurch is located.

The samples were taken after the year 2010 since most of the strong and well

known earthquakes in the region happened afterwards, and the data quality

is more consistent in recent times. It should be noted that strong aftershocks

which usually occur within a few days after a large earthquake were excluded.

For both classes, appropriate samples of earthquakes needed to be se-

lected. The 12 events considered as the positive class are listed in Table

6.1. The small number of samples is the consequence of the fact that strong

earthquakes happen very rarely throughout history, and more so in a partic-

ular region. Another 12 samples were taken from the catalogue from around

the same time period and region where there were no big earthquakes and

the maximum magnitude experienced in the surrounding days did not see

any signi�cant jump. These samples were the negative class, representing

episodes of low overall seismic activity.

For the purpose of this study, the reading used is Seismic time-series

data from the Long Period Band Type, which corresponds to a 1 Hz sample

rate. The instrument code used is H, which means High Gain Seismometer.

The Orientation Code is N, which means that the displacement measured is

along the direction of North-South horizontal axis. Four seismic stations from

the Canterbury area (McQueen's Valley, Oxford, Lake Taylor Station, and

Kahutara) were selected for their proximity within and around the region

of interest, and generally higher uptime. Other nearby candidate stations

were excluded because signi�cant amount of their recordings have gaps and
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Table 6.1: Earthquakes within the Canterbury region used as positive sam-

ples

Public ID Date Magnitude Depth (km)

3366146 September 3 2010 7.1 11

3450113 January 19 2011 5.1 9

3468575 February 22 2011 6.3 5

3474093 March 5 2011 5.0 10

3497857 April 16 2011 5.3 9

3505099 April 29 2011 5.2 11

3525264 June 5 2011 5.5 9

3528810 June 13 2011 5.9 9

3591999 October 9 2011 5.6 8

3631359 December 23 2011 5.8 10

2015p012816 January 5 2015 6.0 5

2015p305812 April 24 2015 6.2 52

empty values, presumably due to downtime periods. The geographical lo-

cation of these stations along with the others in the New Zealand National

Seismograph Network can be seen in Fig. 6.4.

Alongside NeuCube, several di�erent classi�ers were used for comparison.

Traditional machine learning methods like the Multilayer perceptron (MLP)

and Support Vector Machine (SVM) were included, as well as the more ad-

vanced Evolving Classi�er Function (ECF) that is based on the evolving

connectionist systems principle as laid out by [Kasabov 2013a]. The param-

eters of the other algorithms are manually optimised in a heuristic manner

since the number of hyperparameters are relatively fewer than NeuCube.
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Figure 6.4: New Zealand National Seismograph Network with the 4 se-

lected sites around Canterbury area grayed (McQueen's Valley: MQZ, Oxford:

OXZ, Lake Taylor Station: LTZ, and Kahutara: KHZ)

6.5.2 Data Acquisition and Preparation

The seismometer readings preceding the sample earthquakes as described

in Section 6.5.1 was obtained from the New Zealand GeoNet's Continuous

Waveform Bu�er web services. The website provides access to an immense

amount of data collected since digital recording in New Zealand commenced

in 1986. Waveforms in the GeoNet CWB (Continuous Waveform Bu�er)

data repository can be accessed using a Java client provided for the public to

download. The client accesses the server and downloads �les in MiniSEED,

SAC or plain text formats. In this research we used the default �le type
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Figure 6.5: This timeline illustrates the relationship between the actual

time the earthquake starts, the o�set, and the observation duration used in

this experiment.

Seismic Analysis Code (SAC), which is a general purpose interactive pro-

gram designed for the study of sequential signals, especially time series data

[Tapley 1992].

To predict ahead an actual event, data needs to be o�set by a certain

amount of time. The duration of the observation also needs to be chosen,

which in turn will determine the length of the prediction horizon. This

arrangement is depicted in Fig. 6.5. In this experiment, the e�ect of varying

the prediction horizon on classi�cation accuracy is analysed. For the purpose

of this study, the observation duration length is �xed to 5 days (120 hours).

After the raw data is obtained, simple preprocessing steps needed to be

applied to prepare the data to be fed to the models. The input data I of

a sample for this earthquake prediction problem is de�ned as L1, L2, ..., Ls

where s is the number of seismic sites which are taken into account. Each

vector L ∈ I is a time-series L = a−t−d, a−t−d+1, ..., a−t in which the values are

a chronologically ordered set of d real-valued variables, d being the duration of

observation and t the prediction horizon, i.e. the time before the earthquake

occurs, and assuming a1 is the value at the occurrence of the earthquake.
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Figure 6.6: Raw seismogram (left), and after pre-processing (right). X-axis

is the discrete time unit and Y-axis is the seismicity readings.

Since the seismograph reading is high-resolution spanning over a long

period of time, the standard deviation of the signal is computed in a piecewise

manner in order to reduce the length and dimensionality of the time series.

So I is now Ī =
{
L̄1, L̄2, ..., L̄s

}
, in which the ith element of time series L̄ of

length w is calculated as:

ai =

√√√√√w

d

d·i
w∑

j= d
w
(i−1)+1

(aj − µ) (6.1)

where

µ =
w

d

d·i
w∑

k= d
w
(i−1)+1

ak (6.2)

This dimensionality and noise reduction step is illustrated in Fig. 6.6,

showing that after the transformation, the resulting time series gives a clear

indication of the strength of the seismic activity over a certain period of

time. While the other classi�ers require the signals to be �attened out of

the into one feature vector, they can be directly fed into NeuCube, which

will discretise the signals into spike trains as shown in Fig. 6.7. The spike

encoding method used in this experiment is the Thresholding-based temporal

di�erence encoding method. In short, some threshold δ is de�ned such that

we calculate an output spike s(t) as:
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s(t) =

+ if i(t) ≥ δ + i(tlast)

− if i(t) ≤ δ + i(tlast)

(6.3)

Where i(t) is the input value at the current time and i(tlast) the previous

one. + and − represent excitatory and inhibitory spikes respectively. This

method is conceptually similar to the one used in Dynamic Vision Sensor

(DVS) cameras and is argued to be biologically plausible [Kuang 2012].

6.5.3 Sampling Bias

The presence of biases limits the generalisability of any learning method

trained on a speci�c dataset [Tommasi 2017]. While it remains an open

question whether creating an unbiased dataset is possible given limited re-

sources, it is essential to be aware of the biases that might manifest in the

dataset that is used in this research.

The capture bias is related to how the waveforms were acquired both in

terms of the condition of the sensors that were used and of the variation in

external circumstances (weather, non-seismic noises) at the time of record-

ing. The category or label bias comes from the fact that determining an

earthquake's severity category is not as simple as binning its moment magni-

tude reading: it has a lot to do also with the depth of the epicentre, duration

of the shock, geological condition of the surrounding areas, slip geometry,

and whether one is a main shock or an aftershock [Purcaru 1982]. The bi-

nary labelling of positives and negatives in this research could potentially be

inadequate in capturing the subtle technical di�erences between earthquakes.

Additionally, the dataset may contain only a distinct set of shocks and

this causes the negative bias. To put it in another way, the model trains

only from the classes shared among them as opposed to the universal set of

earthquake types which were not considered in this research. Moreover, the
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Figure 6.7: Preprocessed seismogram and the resulting spike train

discrete spatial region-of-interest selection boundary might also introduce the

exclusion bias to the dataset. In other words, earthquakes outside but close to

the perimeter were excluded, although they might have a�ected the sensors'

readings and thus are excellent sample candidates. Finally, the dataset is

balanced to yield equal amount of positive and negative samples. This is a

special form of selection bias, in which proper randomisation is not achieved.

In reality, the periods of quiescence vastly outnumber the earthquake shocks.

Indeed, the problem of dataset bias in this research originates from the

complications non-exhaustively listed above; the limited nature of the dataset,

curated to train and evaluate learning models, might lead to false conclusions.

This predicament and its countermeasures go beyond this research and it is

a long-standing problem in machine learning.
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6.5.4 Results

The experiment was carried out by running the data through the di�erent

classi�ers and varying the length of the prediction horizon. The parameters

for each classi�er were tuned heuristically to obtain the best results from

each of them. In addition to the accuracy, the performance of the classi�ers

is measured in terms of the balanced F-score on the positive earthquake class,

which is the harmonic mean of Precision and Recall of binary classi�cation

problems and can be formulated as: F1 = 2TP/(2TP + FP + FN). This

additional measure is important, since overall accuracy alone does not reveal

the actual performance within each of the classes which is of interest in a

binary classi�cation problem. Since the number of samples is small, the train-

ing/validation scheme used is leave-one-out cross validation [Kasabov 2013a].

The result of the experiment is laid out in Table 6.2. As expected, shorter

prediction horizons produced better prognosis. The e�ect of this prediction

horizon to the accuracy of these di�erent models is visualized in Figure 6.9.

It should be noted that in a balanced binary classi�cation problem, there is

a baseline accuracy of 50%, which can be achieved statistically by random

guessing or giving the same answer to all the cases. The best prediction

accuracy obtained with the NeuCube model successfully predicted 11 out

of 12 strong earthquakes and raised only 1 false alarm, 1 hour prior to the

actual event, which is indeed promising. It is interesting to note that no

models were able to di�erentiate between the two classes 48 hours ahead of

an earthquake event, suggesting the possibility a certain temporal limit to

the prediction horizon in this particular experiment.

6.5.4.1 Experimental Rigor

In total, there were only 24 examples in the data set. This naturally raises

some concerns about whether this is large enough for a relatively complex
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Table 6.2: Classi�cation accuracy result with varying prediction horizon

length

Classi�er 1 hour 6 hour 24 hour 48 hour

MLP Accuracy 58.33% 54.16% 41.66% 41.66%

F-Score 0.58 0.52 0.41 0.41

TP Rate 0.58 0.50 0.41 0.41

FP Rate 0.41 0.41 0.58 0.58

SVM Accuracy 54.16% 50% 37.5% 37.5%

F-Score 0.58 0.52 0.41 0.41

TP Rate 0.58 0.50 0.41 0.41

FP Rate 0.41 0.41 0.58 0.58

ECF Accuracy 70.83% 66.67% 66.67% 50%

F-Score 0.63 0.60 0.66 0.64

TP Rate 0.50 0.50 0.66 0.91

FP Rate 0.04 0.16 0.33 0.91

NeuCube Accuracy 91.67% 83.33% 70.83% 54.17%

F-Score 0.91 0.80 0.72 0.42

TP Rate 0.91 0.83 0.75 0.33

FP Rate 0.08 0.25 0.25 0.25

algorithm like NeuCube. This is unfortunately one of the natural limitations

with large earthquakes studies. Moving backwards in time is also not a pos-

sibility since the sensors used were only available recently. It should be noted

that this is a highly-localised feasibility study and should not be interpreted

as claiming a general capability of short-term earthquake prediction.

As a supplement, another way of con�rming that the algorithms are learn-

ing the two patterns is proposed. Table 6.3 shows an interesting perspective

on how the classi�ers would work if the input is the stream data of the seis-
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Table 6.3: Classi�cation output results with stream data from 2010-2015

Classi�er Output Actual Data Random Data

MLP Neg 34553 27106

Pos 17881 25335

Ratio 0.58 0.50

SVM Neg 34040 28597

Pos 18400 23844

Ratio 0.65 0.54

ECF Neg 34058 29185

Pos 18382 23256

Ratio 0.64 0.55

NeuCube Neg 42135 10426

Pos 10426 24043

Ratio 0.80 0.54

mographs taken from 2010 to 2015 (around 52000 hours in total). A random

stream data with the same statistical property as the actual testing data

was generated and streamed to the classi�ers to see their output vectors.

Trained in a balanced manner, the probability of producing either output

(positive or negative) is equal and this is apparent by observing the 'Ran-

dom Data' column on Table 6.3. Using the random stream data, all the

trained classi�ers produced outputs of the expected 0.5 ratio. However, the

ratios were di�erent when using the actual data. Most of the classi�ers will

noticeably produce more 'negative' decisions despite trained symmetrically,

re�ecting the fact that seismic events are much rarer than periods of low

seismicity. Although this result is not directly usable in a practical sense, it

gave a promising indication that the two patterns were able to be learned

and di�erentiated by machine learning algorithms and NeuCube was found
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Figure 6.8: SNN reservoir with input neurons and synapses after training.

The line thickness and arrow signify the connection weight and direction

respectively, which are obtained by applying STDP unsupervised learning with

the training input data. The more spikes transmitted between two neurons

the stronger they are connected to each other.

to be the most promising tool for the job.

These �ndings also lend further support to previous studies mentioned

and discussed in Sect. 6.2.1 which suggested that there are certain patterns

exhibited by seismicity readings that can be used to predict the imminence

of large earthquakes. The results shown in Table 6.2 and 6.3 seem to in-

dicate that seismicity data is a viable precursor for short-term earthquake

prediction. The connectivity of the 3× 3× 3 cube after training is depicted

in Fig. 6.8. The amount of neurons in the reservoir is notably more than the

number of samples and raises the concern of over-�tting the training sam-
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Figure 6.9: The e�ect of the prediction horizon to the accuracy of di�erent

classi�ers. Performance deteriorates the further away readings are taken

from the events.

ples. However, it has to be noted that the reservoir acts as a map to higher

dimension feature space and is not a classi�er on its own.

6.5.5 Analysis

The NeuCube architecture is devised and implemented with interpretabil-

ity of the model in mind. The connection weights and the spiking activity

in the reservoir can be used to visualise the spatiotemporal patterns and

relationships between input variables learned from the dataset. From the

performance that were obtained, we have the parameters of the model from

which knowledge and further analysis can be gathered. Further investiga-

tion into the model may reveal knowledge about the dynamics of and the

precursors to the earthquakes.
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Figure 6.10: Neuron proportion based on spike communication clustering

for negative samples.

6.5.5.1 Network Analysis

The input neurons are the information sources of the SNN reservoir and

we can determine the neuron clusters belonging to each inputs based on

the spike transmission in the reservoir [Othman 2015]. As the result of the

unsupervised training phase with STDP rules, the more spikes transmitted

between two neurons the stronger they will be connected to each other.

In this section, the connections that are made and the spiking activity

inside the reservoir between the positive and negative classes will be com-

pared to see the di�erence in the patterns that are developing prior to large

earthquakes and periods of low seismicity.

Surprisingly, with the negative samples spiking activities are dominated

by the neurons that are clustered as belonging to the KHZ input, located in

Kaikoura, a town situated on the east coast of South Island 180 km north

of Christchurch (Fig. 6.10). It has been noted that the seismicity of the

Kaikoura region is considerably high [Van Dissen 1991]. This �nding sug-

gests that in the low-seismicity periods, most of the seismic activity in the

region comes mostly from the Kaikoura fault lines and Lake Taylor (LTZ).
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Figure 6.11: The new active fault sources of northeastern Canterbury de-

veloped in the new model by Russ Van Dissen of GNS Science. Overlap-

ping sources are shown side-by-side to distinguish them from one-another

[Stirling 2008].

Furthermore, Figure 6.12 showed that although the spiking activity of LTZ

neurons are notable, it was not temporally correlated with the other in-

puts. In later reports, Kaikoura has been designated as one of the regions

that has been seeing signi�cant increase in seismic activity and hazard due

to having multiple major fault lines clumped together in a very small area

[Stirling 2008]. Figure 6.11 shows the active fault lines that stretch over the

north of Kaikoura.

In contrast to what was happening in low-seismicity period, Figure 6.13

showed that during the high-seismicity periods, there are more interactions

between LTZ and other sites. This suggests that periods with higher prob-
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Figure 6.12: Total interaction between the input neurons for negative sam-

ples. LTZ is not temporally correlated with the other inputs in periods of low

seismicity.

ability of big earthquakes could be indicated by not just stronger activity

coming from LTZ (Fig. 6.14) but also if these activities are temporally cor-

related with other stations.

From these �gures, observations can be made that:

• The seismic activity of the Kaikoura region (KHZ) is the strongest

compared to the other 3 sites.

• Prior to large earthquakes, the activity in the Lake Taylor station (LTZ)

increases and are more temporally correlated with the other sites.

• Although the seismicity of OXZ and MQZ are much lower, they are

well correlated with each other and KHZ.

As an additional consideration, Figure 6.15 shows the Canterbury region

divided into several structural domains, each distinct in terms of neotectonic

setting, style, geometry, and rates of deformation [Stirling 2001]. Domain 7,
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Figure 6.13: Total interaction between the input neurons for positive sam-

ples.

or Canterbury Plains Zone on which the sites OXZ and MQZ are stationed,

has the lowest rates of deformation in the region due to having the furthest

distance from plate boundary. This information supplemented with the ob-

servations in the NeuCube reservoir, could indicate that when it comes to

�guring out the earthquakes in the Canterbury region, the seismicity of Do-

main 2,3 & 4 (where KHZ and LTZ are) holds more relevant information due

to being closer to the Australian and Paci�c plate boundary.

6.5.6 Individual Earthquake Analysis

In the previous section, a way of interpreting the learned patterns have been

presented. In this section, we will observe the individual samples by using

a spike raster graph. A spike raster plot displays the spiking activity of

a group of neurons over time. In this thesis a raster plot each row (y-axis)

corresponds to the index of a neuron in a neuron group. The columns (x-axis)

corresponds to the time in the simulation.

Two samples from the positive group were taken and compared to one
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Figure 6.14: Neuron proportion based on spike communication clustering

for positive samples.

sample from the negative group. The �rst example is the infamous 2010

Dar�eld earthquake, which was 7.1 magnitude strong. Figure 6.16 shows

an increase in activity of LTZ, consistent with the �ndings from previous

section. Moreover, there is a discernible synchronicity between the three of

the input channels (except for MQZ). This could be interpreted that before

large earthquakes, there would be an increase in seismicity over a large area,

picked up by most of the sites at the same times. This is also consistent with

the increased interaction and similarity between features observed in positive

samples from Section 6.5.5.1. This phenomenon can be seen more clearly in

Figure 6.17, which is the raster plot for the 5.1 magnitude earthquake on

June 5, 2011. Not only the input channels spike almost in a uniform and

synchronised manner, the spike rasters for both positive example also exhibit

a wave-like spike propagation in the reservoir over the course of time in

respect to how the input neurons �re together. As a comparison, an example

from a low seismicity period is shown in Figure 6.18. In this particular

instance, the input channels are spiking independent of each other and the

spike activity across the cube does not form a wave propagation pattern as

compact as the others. This could be interpreted as an absence of an increase

in seismicity over a large area, the existence of which could be a potential
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Figure 6.15: Structural domains of the Canterbury region. The domains are

as follows: DOM 1=Marlborough Fault Zone; DOM2,3 & 4=West Culverden

Fault Zone, Porters Pass-Amberley Fault Zone & North Canterbury Fold &

Thrust Belt; DOM 5&6=Mt Hutt-Mt Peel Fault Zone & South Canterbury

Zone; DOM 7=Canterbury Plains Zone;DOM 8=Southern Alps Zone; and

DOM 9=Alpine Fault Zone. [Stirling 2001].

precursor to the imminence of very large earthquakes. A similar phenomenon

has been previously observed and proposed as one of the precursors to large

events, namely the 'Earthquake chains' [Shebalin 2006], which are clusters of

moderate-size earthquakes which extend over large distances and are formed

by statistically rare pairs of events that are close in space and time.
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Figure 6.16: Spike raster plot of the activity in the reservoir 5 days before

the September 2010 Dar�eld earthquake. Notice the increase of activity on

the LTZ channel prior to the earthquake, and the spiking activity of the input

neurons are becoming highly correlated to each other.

6.6 Visualisation

The application of NeuCube for seismic data analysis is not limited to pre-

dictive modelling. As part of this doctoral study, a visualisation tool for

NeuCube called NeuVis originally developed by Dr Stefan Marks at AUT

Colab [Marks 2014] has been adapted to work with seismic data as well.

NeuVis is an immersive virtual reality (VR) visualisation environment that

is designed around the use of consumer VR headsets in an existing wide area

motion capture suite to display scienti�c or engineering data.

The motivation of this visualisation is to explore the potential of NeuCube

to be used as a generic method to visualise spatiotemporal data and its

dynamics in an interactive and immersive way. Di�erent from the rest of the

experiment where a small cube is used and the input channels are limited
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Figure 6.17: Spike raster plot of the activity in the reservoir 5 days before

the earthquake in June 2011. Although there is no increase in seismic activ-

ity, LTZ channel became highly correlated with the other stations, spiking in

sync with MQZ and KHZ.

to four sites, in this section the cube is 20× 20× 3 neurons large and all 52

channels that are available from the New Zealand Seismograph Network are

used.

Figure 6.19 is a screenshot taken from a version of NeuVis that has been

adapted to work with seismic data. It presents the SNN reservoir in a 3D

Virtual Reality environment on top of a map of New Zealand, giving users

an interactive view of the structure of the cube and its activities.

The NeuVis can display various kinds of visualisation of the cube. For

example, Figure 6.20 shows the spiking activity inside the cube above a

certain threshold during a particular time. This tool provides a way for

experts to visualise the seismic activities on a certain area both in real-time

or back and forward in time, giving the users the power to choose what
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Figure 6.18: Spike raster plot taken from a sample of low-seismicity period.

phenomena they want to observe and in a way that is easier to understand

compared to inspecting seismogram from di�erent locations and time.

6.7 Conclusions

This chapter has shown a novel and promising way to analyse spatiotempo-

ral seismic data by trying to predict the occurrence of strong earthquakes

through training a model to di�erentiate between strong and weak earth-

quakes based on spatiotemporal seismicity precursors. This research also

showed that SNN has the potential to be successfully used for early and ac-

curate prediction of hazardous events. The capability of a more advanced

SNN-based method like NeuCube to capture complex spatiotemporal signal

has been demonstrated, in relation to traditional techniques like MLP and

SVM. Several ways of interpreting the model have also been shown, including

3D Virtual Reality environment to visualise the cube activity.
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Figure 6.19: NeuCube SNN reservoir rendered in a 3D Virtual Reality

environment on top of a map of New Zealand, enabling users to immerse

themselves and walk around the neurons and observe the connection building

and spiking activity in time and space.
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Figure 6.20: NeuCube SNN reservoir rendered in a 3D Virtual Reality

environment on top of a map of New Zealand, showing the spiking activity

of the cube.



Chapter 7

Conclusions

7.1 Summary

In this thesis three di�erent methods that tackle various types of data and

employ distinct machine learning and data mining approaches to tackle com-

mon problems faced in spatiotemporal data mining have been presented.

Each of the method is summarised in the following sections.

7.2 Rule Mining from Multiple Time-series

Discussed in detail in Chapter 2, this method aims to generate temporal

association rules from multiple time-series. Based on the concept of asso-

ciation rule mining, the main component of the framework is a modi�ed

Apriori algorithm that was expanded to also work with time dimension and

multiple time-series. The input time-series data is transformed to symbolic

representation by discretisation.

As part of the research, a binary discretisation technique is also proposed.

It is a simple sliding window algorithm that works by having two segments of

a particular size starting from the beginning of the series which slide across

the series incrementally, employing a concept-drift detection algorithm. The

proposed method is adaptive to the data stream and produces better binning

for data with Poisson distribution.

An application of the proposed framework is demonstrated on a dataset
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that tracks the number of aphids caught in traps along with the weather vari-

ables over almost twenty years in the Lincoln region. The dataset tracks the

weekly number of aphids caught in a suction trap along with weather vari-

ables like the cumulative weekly rainfall, wind run, average air temperature,

potential de�cit, Penman potential evaporation, and solar radiation. The

experiment focuses on whether the proposed framework and methods could

discover interesting rules from the multiple time series that can act as a pre-

cursor of aphid infestation. The results of this experiment have shown that

the rules generated are useful in identifying high levels of aphid infestation.

These temporal rules are actionable and are descriptive of the relationships

between variables that also take time information into account.

7.2.1 Future Research Directions

This work could be extended in various ways and on many aspects. The use

of fuzzy representations and rules is promising, since it re�ects better how

the rules are represented in human language and concepts, as has been ar-

gued in [Chen 2012]. Building a classi�er which is able to employ the mined

rules to improve long-term prediction is also a possible extension. A class of

algorithm that uses association rules to produce classi�cations is discussed in

[Balaji 2013]. Decomposing the time-series into trend and seasonal decom-

positions is also a promising way to pre-process the data, as it could better

reveal the interactions between the variables. Rule extension that encode

spatial information in the rules is also an important enhancement.

7.3 Adaptive Local Models

The second method deals with building local models for a time-step ahead

spatiotemporal prediction problem. To construct these local spaces of con-
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cepts, the problem is treated as an exercise of detecting concept drifts in

space and time. Traditionally, global models are employed with the implicit

assumption that there is no variability of data characteristics as a function of

space. By making a speci�c adaptation to handle the problem of spatiotem-

poral nonstationarity, we can improve the performance of various machine

learning solutions.

The Hilbert curve is a type of space-�lling curve whose locality-preserving

property is well studied. Taking advantage of this attribute of Hilbert curve

by using it as an inter-dimensional mapping scheme, the 2-dimensional spatial

data can be untangled and is able to work with existing concept drift detec-

tion algorithms. Every time a change is detected, local regions are identi�ed

and models are built to learn them. As an additional step, a multivariate

statistical test can be used to check the repository for recurring concepts and

reuse old models.

The framework was tested on a dataset curated from the earthquake cat-

alogue data around the Christchurch region. The experiment con�rmed that

superior predictive capability can be attained with local models compared

to global approach. A further analysis of the system's behaviour is also

discussed.

7.3.1 Future Research Directions

One of the limitations of this research is the lack of testing on synthetically

generated data. Curating a synthetic dataset in which the ground-truth re-

garding the concepts and the changes are known will provide a better insight

and validation to the adaptability of the method. Another limitation is the

repository management aspect. In handling recurring concepts, searching

the repository for previously learned models is a computationally expensive

operation and grows linearly as the number of model learned increases.
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An improvement in the way the local model information is used can sig-

ni�cantly increase the performance of the system. This can be carried out

by having a meta-learner or an ensemble weighting mechanism instead of

building a model for each local spaces. For example, in [Sakthithasan 2015]

an ensemble approach was used to aggregate learned concepts stored in the

form of Fourier spectra.

The mapping of 2-dimensional data into 1-dimension so it can work with

existing concept-drift detectors poses big limitations. This approach neces-

sitates that the dataset is in discrete input space and there are so many

scenarios where the traversal produces suboptimal partitioning. In terms

of developing a more general method for spatiotemporal data mining with

concept drifts, the development of a true multi-dimensional concept-drift de-

tector is necessary. For example, the use of clustering to identify local regions

of concepts based on grid density has been explored [Sethi 2016, Lee 2012].

However, using density as the measure of change can be misleading and the

sensitivity of the system relies on a manually-set threshold value.

7.4 NeuCube for Seismic Data Analysis

The last method employs a Spiking Neural Network (SNN)-based system

called NeuCube to build an event prediction system. SNN is considered the

next-generation model of neural networks. One of the main di�erence in

the mechanics of SNN is the inherent concept of time. NeuCube transforms

spatiotemporal data into trains of spikes and feeds them into a reservoir of

spiking neurons which functions as a mapping to a higher-dimensional feature

space.

As a feasibility study, the system was trained to di�erentiate seismic-

ity readings obtained from four spatially scattered seismograms before large

earthquakes happen vs. periods of low seismicity. The region and time pe-
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riod of interest were around the city of Christchurch from 2010. After heuris-

tic parameter optimisation, a model which perform comparatively well with

leave-one-out cross validation was obtained. A further analysis of the system

revealed interesting insight to the dataset. The experiment results showed

that seismicity readings could be a viable precursor of large earthquakes and

NeuCube proved to be a promising tool for such analysis.

7.4.1 Future Research Directions

This preliminary study has several challenges that should be overcome to

extend it into a systematic research. The main problem with very large

earthquake prediction is the scarcity of samples, thus limiting the ability

of the model to be validated. A potential workaround to this problem is to

increase the sample count by lowering the criteria of selection for the positive

samples at the cost of also including possibly irrelevant smaller earthquakes.

Building additional local models for other earthquake prone geographical

regions such as Japan, California, Indonesia and Chile is also a possible

way to further test the proposed methodology. An interesting problem to

take into account in earthquake sampling is the additional properties of the

earthquakes such as depth, magnitude, and the exact location of epicentrums.

To supplement the seismicity data, spatiotemporal information from other

sensors can be incorporated. This includes but not limited to satellite remote

sensing technologies such as measuring disturbances in the total electron

content of the ionosphere [Rhoades 2015], geodetic and GPS sensors, and

groundwater Radon content [Planini¢ 2004]. This can be done by building

multiple NeuCube reservoirs for di�erent types of stream data. In the fu-

ture, a framework to interpret and enable NeuCube to work with multimodal

spatiotemporal stream data will be needed.

A further interesting aspect would be the extraction of knowledge in the
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form of symbolic and human understandable rules of the spatiotemporal pat-

terns exhibited by seismicity readings in regards to the occurrence of earth-

quakes and our knowledge about the underlying mechanism of these seismic

activities. This spatiotemporal patterns are captured in the connections

made in the reservoir, and a formal methodology to mine this knowledge

would be a great addition to the capability of NeuCube. An excellent plat-

form to build this idea upon is to induce and represent knowledge from SNN

using Finite State Machines [Natschläger 2002]. This methodology is also a

promising line of research to be extended for the prediction and analysis of

other disastrous events like tsunami and land slides.
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