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Abstract 

ProPublica’s allegations, that an algorithmic tool used to predict re-offenders is “biased against 

blacks”, met a wave of criticism from the wider community.  Researchers have since shown a 

trade-off between accuracy and fairness, concluding that the risk tool, COMPAS, was not 

inherently discriminatory.  However, in light of ProPublica’s objections, a growing body of 

literature on assessing fairness in machine learning systems has taken flight.  Performance criteria 

combine quantitative and qualitative elements, so users ‘preferences’ are hard to specify 

objectively.  This study explores a Pareto frontier framework to illustrate the relative model 

(in)efficiencies that arise in Risk Prediction Instruments (RPIs).  The research follows a logistic 

framework for estimating recidivism risk, and the design parameters include the choice of fairness 

constraints and the choice of a bin scoring system (the “bin number”).  This dissertation presents 

three experiments where decision-makers can improve performance in their RPIs: (1) improving 

efficiency through a relaxed version of the constraint, (2) improving efficiency through ‘cost-

free’ constraint implementation, and (3) improving efficiency through a revised scoring system.  

Each of these properties results in objective Pareto improvements. 
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 Introduction 

Algorithms have permeated almost every aspect of our daily lives.  Decisions on loans, jobs, 

college admission, and insurance are a few of the many choices where outcomes may be 

determined on the basis of a risk score.  Naturally, prediction algorithms cannot be 100% accurate, 

but the cost of errors increases considerably in high-stakes settings.  For example, prediction 

algorithms used in the criminal justice setting help judges to assess a suspect’s likelihood of re-

offending.  The algorithm assigns a risk score to a defendant, which is then used to guide decisions 

on bail or sentencing.  If machine learning were to mispredict these scores, it could have 

significant and detrimental impacts on societal welfare.  

It is well known that algorithms perpetuate the data that is fed to them – ‘they are what they 

eat’.  So, it is not uncommon to find cases where pre-existing bias is propagated and entrenched.  

One solution to avoid this process of perpetration and propagation of human bias is to constrain 

a model by some notion(s) of fairness.  A constrained model might generally lead to reducing 

inequalities.  However, as expounded below, the solution is typically ambiguous. 

Part of the US criminal Justice System’s obligation is to represent all defendants fairly, in 

good faith, and without discrimination.  For example, imagine two students with the same 

attributes but of a different race.  A system that represents both groups equally would mean that 

both students have an equal probability of being admitted into tertiary education.  Similarly, an 

African-American defendant awaiting his pre-trial release should not receive a lower risk score if 

he changed her/her race to white – hypothetically, of course. 

Unfortunately, achieving “fair outcomes” for two different race groups is not as simple as 

constraining the model with notion(s) of fairness.  An economic agent who decides to constrain 

the model for equity reasons must face the consequence of giving up accuracy of said model.  

Intuitively, satisfying all the relevant fairness criteria compromises the most accuracy.  Similarly, 
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a model free from the requirement to meet any relevant fairness criteria – otherwise known as an 

unconstrained model – outperforms (in an accuracy metric) all other possible arrangements of the 

otherwise identical model.   

Model designers play a critical role in determining individual outcomes.  Outcomes are in 

part decided by the choice of internal parameters that are used in prediction tools.  Design 

parameters include the number and types of fairness notions, and the choice of a bin-scoring 

system.  The common element amongst these choices is that, in one way or another, they each 

affect accuracy (some more so than others).  Therefore, it is essential that a designer carefully 

considers the trade-offs in each decision and the potential implications on society.   

Attitudes to fairness are comprehensive and multi-dimensional.  In an ideal world, a user 

would like to choose the set of constraints that would maximise aggregate welfare to society.  

However, the ‘optimal’ solution – if we could define optimal – is both a qualitative and 

quantitative one.  Since performance criteria combine quantitative and qualitative elements, they 

are difficult to reduce to a single metric.  For this reason, this research paper explores a Pareto 

frontier framework to illustrate relative model efficiencies.  

In this framework we consider a user, a designer and a planner of the risk tool.  The designer 

sets and administers all the design parameters, including the bin number and the constraints to 

impose.  The planner evaluates the quality of the tool.  It is the planner’s utility function that 

quantifies the level of ‘efficiency’ of the model.   

The design features of the model affect the planner’s welfare, which is summarised by some 

notion of ‘efficiency’ and quantified in the form of a planner’s utility function.  The ‘model’ is a 

logistic tool for estimating recidivism risk, converted into a ‘bin score’, and possibly constrained 

by some fairness conditions.  The relevant performance (efficiency) criteria are ‘accuracy’ – 

quantified using Log-Likelihood (LL) – and ‘fairness’ (expressed as various constraints on score 

variation across races).  

In the next section, we show (in three experiments) how planners can improve efficiency of 

their prediction tools using the Pareto Framework this paper builds upon.  Each of the proposed 

three experiments show how the “improved” versions of the model lead to performances that are 

orders of magnitude superior to their respective conventional versions. 
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1.1 Experiment (1) 

This first experiment is a robustness test of the accuracy gain from relaxing a constraint.  This 

dissertation explores where accuracy gains can be achieved most quickly per unit relaxation of 

the fairness constraint.  

1. Imagine two different permutations of a model; Model A has twice the accuracy of Model 

B.  However, Model A is constrained such that error rates are within ±0.01 percent 

between different racial groups, whereas Model B is constrained to have no disparity in 

error rates.  Most planners would not hesitate to choose Model A over Model B – and 

their choice would be well justified.  A gain of 100% accuracy to the model at the expense 

of allowing some trivial variation in error rates seems sensible and legitimate.   If the 

planner would agree with this proclamation, then the planner’s utility function would 

satisfy 𝑈𝐴 > 𝑈𝐵.  This means that the indifference curve containing Model A is above 

Model B’s. 

Distinct views on fairness are qualitative, and thus deviations from a given fairness constraint 

are hard to quantify objectively.  Experiment 1 has a different “flavour” from the two 

following experiments, which exhibit straightforward Pareto improvements.  Experiment 1 

suggests that the planner may be willing to give up some ‘small’ amount of ‘fairness’ in order 

to gain significant accuracy of the risk tool.  The experiment shows that accuracy may be 

quite “cheap”.  If the planner’s utility function has a Marginal Rate of Substitution (MRS) for 

accuracy vs. fairness that is not too large (in magnitude), s/he may find the trade-off worth 

making.  This paper quantifies the local trade-off so that the planner can compare it to his/her 

MRS.  Moreover, distributions of probability estimates illustrate how “tight” a strict version 

of the constraint can really be, and so provides strong motivation for relaxing them.  

1.2 Experiment (2) 

Experiment (2) proposes that a designer can improve efficiency in their RPI through ‘cost-free’ 

constraint implementation.  The following example illustrates this possibility.  
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2. Imagine an algorithm constrained by a single fairness condition, which we denote as 

Model A.  Now suppose a second condition could be imposed ‘free of charge’ – that is 

without costing the model any accuracy – we denote this permutation as Model B.  

Clearly, the second arrangement is strictly better than the former, thus any rational 

designer would choose Model B.  

In this second example, we can see that there is no ambiguity between the choices.  One choice 

is strictly better than the other, that is,  𝑈𝐵 > 𝑈𝐴.  In other words, all else equal, a designer can 

strictly improve fairness outcomes without costing the model any accuracy; thus, attaining 

prediction tools of higher efficiency. 

1.3 Experiment (3) 

A third Experiment describes the bin-number frontier.  The resulting Pareto improvement stems 

from an improvement of model performance in two dimensions: accuracy (higher Log-Likelihood 

(LL)) and the “informativeness” that a unique bin-scoring system provides.  “Binning” refers to 

the partitioning of continuous variables into categorical groups.  This system of transforming 

continuous variables to discrete variables is often used by designers to discover patterns (which 

would be difficult to analyse otherwise) and so that the data fits naturally into the framework.  

 

3. Imagine a user who chooses a model with a 2-bin scoring system and constrains the model 

by a single fairness condition.  Now suppose a 3-bin scoring system meets the same 

fairness condition but achieves a higher LL.  The latter model would be an objective 

improvement in efficiency (improves accuracy with the same type of fairness constraint) 

and also better ‘informs’ the user about the relative risk of a defendant; the model would 

give judges a more comprehensive ‘set of scores’ to work with.  This dissertation verifies 

the possibility for both strict and relaxed versions of the fairness constraint.
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 Research questions 

The experiments conducted in this paper used ProPublica’s dataset to illustrate Pareto 

improvements (Experiments 2 and 3) or potential welfare-improving trade-offs (Experiment 1) 

by assessing the relative trade-offs in three dimensions: accuracy (measured in LL), fairness and 

‘informativeness’.  Designing efficient RPIs is highly technical due to the confounding 

interactions between these three dimensions and their local trade-offs.  The experiments this paper 

sets out illustrates three key findings:  1.  It explores where accuracy gains are achieved most 

quickly per unit relaxation of the fairness constraint.  2.  When ‘balance for the positive class’ (a 

fairness notion) is satisfied, a designer can impose ‘balance for the negative class’ without costing 

the model any accuracy (and vice versa).  3.  A 3-bin scoring system delivers a higher LL than a 

2-bin scoring system while simultaneously improving ‘informativeness’. 

A contribution of this work is to provide a theoretical and statistical framework for reasoning 

about equity in prediction tools.  The harm-reduction framework I build in this dissertation aims 

to minimise the adverse societal effects that stem from unequal treatment based on group 

membership.  Moreover, this dissertation investigates the degree to which prediction is 

compromised when administering interchangeable design parameters.  This article does not 

‘solve’ any treatment asymmetries in its full breadth, but instead highlights the cases where users 

can improve efficiencies in their existing RPIs and as a result, improve societal welfare.
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 Literature review 

In Prediction Policy Problems, the authors illustrate where predictive techniques could lead to; 

higher utility in patients undergoing joint replacement procedures, in addition to considerable 

cost-savings for insurance companies (Kleinberg et al. 2015).  For example, replacement of 

affected joints is frequent among the elderly suffering from osteoarthritis (pain and stiffness in 

bones).  Patients who undergo surgery have seen meaningful improvements in quality of life.  

However, the patients have to first endure a 12-month recovery period after the time of the 

operation.  During these months, it is not uncommon to see significant pain and disability 

(disutility) inflicted on the patients.  Therefore, funds should not be allocated toward the riskiest 

patients since these surgeries would have a higher probability of being futile.  If capital was 

allocated toward patients with a higher probability of surviving the recovery period (and the 

previous surgery), then accrued benefits could be on a potentially large scale.   

Kleinberg et al. drew a 20 percent sample of 7.4 million Medicare beneficiaries in the United 

States, and from these, the authors found that 4.2 percent of eligible patients would die within 12 

months of surgery, and 1.4 percent die from complications during the operation.  This seems to 

suggest that, on average, a low fraction of the patients who undergo surgery end up with a futile 

outcome.  However, the result is misleading since the policy decision is really about “whether 

surgeries on the predictably riskiest patients were futile” (2015, p.493).  Since the payoff (utility) 

for undergoing surgery depends on the event of mortality, the application becomes a pure 

prediction problem and not a problem for causal inference.  The authors simulated the benefits 

using a regularised logistic regression trained on 65,395 Medicare beneficiaries undergoing joint 

replacement.  They concluded that 10,512 deaths could have been averted and that cost-savings 

could be upwards of USD 158 million per year if predictive methods were employed to identify 

the risk level of a patient. 
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Predictive methods, such as a logistic regression, could be employed in many domains which 

could lead to larger societal benefits.  The challenge is identifying the domains in which prediction 

tools can be applied and expanding our conceptual understanding of ‘what is predictable’.  

3.1 ProPublica analysis 

In 2017, the New York Council passed the first Bill (Algorithmic Accountability Bill) in the 

United States to address algorithmic discrimination in government agencies (Kirchner, 2017).  

The Bill was designed to make the city’s algorithms fairer and more transparent.  Following the 

Bill, an article published by a non-profit New York journalism company ProPublica revealed that 

an RPI called COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) 

was inherently biased against African-Americans (Angwin et al., 2016).  The algorithm was 

developed to increase the efficiency of bail and sentencing decisions for the US criminal justice 

system and was a widely used risk tool by courts to predict a defendant’s probability of recidivism.   

A general algorithmic pipeline maps characteristics of an individual to a system architecture 

which generates a probability estimate of some event occurring (e.g., a defendant recidivating) 

(Fig. 1).  These probability estimates are assigned to a corresponding ‘bin’ that then becomes 

‘useful’ and measurable to the user (e.g., a generated “risk score” on a defendant’s relative level 

of risk).  The COMPAS algorithm used a range of scoring integers between 1 and 10: a score of 

10 representing a defendant with the highest likelihood of re-offending and a score of 1 

representing a defendant with the lowest likelihood of re-offending.  The company classified a 

defendant as “high risk” if the algorithm assigned the individual a score above four and classified 

a defendant as “low risk” if the generated score was equal to or below four (i.e., a high risk 

“threshold” value of 4).   

The company’s stylised findings were that prediction “fails differently” for black and white 

defendants.  They found that African-American defendants who did not subsequently re-offend 

had higher average risk-scores than white defendants who also did not subsequently re-offend.  

Similarly, white defendants who subsequently re-offended had lower average risk-scores than 

their African-American counterparts.   
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Their primary finding was that African-American non-recidivists were almost twice as likely 

to be misclassified as high risk compared to white non-recidivists, while white recidivists were 

significantly more likely to be misclassified as low-risk compared to African-Americans 

recidivists.   

Alex Chouldechova (2017), a leading researcher in the field, studied “imbalance in 

misclassification rates between group membership” in the COMPAS algorithm.  She defined the 

asymmetrical treatment between the two groups as an imbalance in “false-positive rates” (FPRs) 

and “false-negative rates” (FNRs) between blacks and whites.  An FPR refers to the ratio between 

the number of negative instances (for a subgroup of individuals) wrongly categorised as positive 

and the total number of actual negative instances (for the same subgroup).  Similarly, the FNR is 

calculated as the ratio between the number of positive instances (for a subgroup of individuals) 

wrongly categorised as negative and the total number of actual positive instances (for the same 

subgroup).  In the context of predictive policing, a positive instance is the event where a defendant 

recidivates within the next two years and a negative instance is the event where a defendant did 

not subsequently recidivate.   

Chouldechova (2017) found that COMPAS has “considerably higher FPRs and lower FNRs 

for black defendants than for white defendants” (2017, p.2).  Further, she proved that this was not 

only true at a high risk cut-off threshold was equal to four (the threshold ProPublica used in their 

analysis), but also across all cut-off values.  Chouldechova verified that the COMPAS tool had 

satisfied the fairness notion “predictive parity” (when the likelihood of recidivism among high 

risk offenders is the same, irrespective of group membership).  Furthermore, she illustrates that 

predictive parity is mutually incompatible with error rate balance1 when recidivism prevalence2 

differs across group membership.   

 
1 Error rate balance is when the both the notions of FPRs and FNRs are simultaneously equalised across race. 

2 Prevalence is the proportion of individuals who recidivate in a given population. 
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3.2 Northpointe rebuttal 

Northpointe, the developers of the COMPAS tool, firmly rejected the ProPublica’s allegations; 

that COMPAS was biased against African-Americans.  Northpointe asserts that COMPAS was 

(and still is) equally fair to black and white defendants (in the sense of being well-calibrated).  

The company stipulated that the risk tool was devised to achieve the notion of predictive parity 

and they had executed on that objective.  “A test that is correct in equal proportions for all groups 

cannot be biased” (Angwin and Larson, 2016).   

Despite the criticism that ProPublica had met from Northpointe, their fundamental claim is 

not inherently erroneous.  There should not be such a disproportionate number of black defendants 

misclassified as ‘high risk’ compared to their white counterparts.  Similarly, there should not be 

such a disproportionate number of white defendants misclassified as ‘low risk’ compared to their 

black counterparts.  However, the fact that recidivism prevalence had differed between African-

Americans and Caucasians in ProPublica’s case is where this challenging goal emerges: designing 

an architecture that is both equally accurate and equally fair (or at least closer to that goal) to 

blacks and whites. 

3.3 Kleinberg, Mullainathan and Raghavan 

The literature shows that there is no simple, all-encompassing notion of fairness for this class of 

systems.  The question of how a risk tool can be both fair (satisfy predictive parity) and unfair 

(violate error rate balance) at the same time attracted top researchers across the world.  Kleinberg 

– a computer science professor at Cornell University –and his co-authors, found that satisfying 

balance for the positive and negative classes (or “group fairness”) while simultaneously satisfying 

calibration within groups, is mathematically impossible to achieve when recidivism prevalence 

differs across group membership (Kleinberg, Mullainathan, and Raghavan, 2017).  These 

definitions of “group fairness” and “calibration within groups” are formalised in Chapter 5.2. 
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3.4 Race-aware algorithms 

Since the release of the ProPublica article, policymakers had begun to expose their risk-tools to 

“race-blindness” in the belief that it would eliminate human bias in sentencing decisions 

(Kleinberg et al. 2018).  Race blindness occurs when a user excludes race variables (known as 

protected or sensitive features) from their risk tools.  The authors show that race-blindness may 

in fact be doing “more harm than good.”  They use nationally representative US data to predict 

the likelihood of college success in the use of student admission decisions.  Furthermore, they use 

a model to show than an equitable planner may be able to increase equity and “efficiency” by 

including protected variables rather than omitting them.  It is important to distinguish the 

difference between how Kleinberg et al. defines “efficiency” and how this dissertation defines the 

term.  This dissertation uses the term “efficiency” to describe the overall performance of the 

model (on the accuracy, fairness and informativeness dimensions together), as captured by the 

planner’s utility function.  Kleinberg et al. uses the term to illustrate the model’s relative 

performance in only one dimension, accuracy.  

Kleinberg et al. (2018) define two types of welfare planners: the efficient planner and the 

equitable planner.  The efficient planner cares only about the predicted performance of the 

students whereas the equitable planner cares about both student performance and racial 

composition.  For example, an equitable planner might choose to increase the fraction of black 

students admitted by lowering the high-school SAT score threshold for only minorities.  The 

authors show that when a planner includes protected variables in his/her model, both the equitable 

and efficient planner are strictly improving their respective objective functions (provided that the 

protected variable is actually useful in predicting students’ college success).   

The authors used a public time series dataset called “Department of Education’s National 

Education Longitudinal Study of 1988” (NELS:88) to capture students’ GPAs who entered eighth 

grade in 1988 and tracked (GPA) progress into their mid-20s.  They discovered that the “race-

aware” algorithm outperformed the race-blind model.  For any given level of diversity, the 

fraction of students selected by the race-aware algorithm who achieved high grades (GPA > 2.75) 
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exceeded that of the race-blind algorithm.  In contrast, the race-blind algorithm led to the highest 

fraction of selected students receiving low grades (GPA < 2.75).  

Since the efficient planner is only concerned about the ranking of the outcome, having a race 

variable included is always the best choice.  Even the equitable planner (one who might lower the 

threshold for minorities) should include a race variable.
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 Data 

Data was retrieved from an online public data repository, “Github Inc.” (uploaded by ProPublica).   

The data sample includes observations of 7,215 criminal defendants from Broward County, 

Florida, across the years 2013 and 2014.  The file contains data for each defendant on age, sex, 

race, number of prior offences, charge degree, in addition to a few generated variables: violent 

risk scores, and COMPAS risk scores.  Table 1a reports the summary statistics of age, number of 

prior offences, decile scores and violent decile scores.  Violent risk scores are risk assessments 

on whether a defendant will commit a violent crime.  Based on the severity of the criminal cases, 

the Supreme Court of Florida classifies charge degree into two broader categories; 

misdemeanours and felonies.  Misdemeanours charges are generally considered less severe and 

are further classified into first- and second-degree crimes.  Felonies are considered severe and are 

divided into five categories including a separate category for drug-related offenses.  The sample 

also contained records on two-year recidivism outcomes for each defendant which was the metric 

used to derive our findings.  

Since “charge degree” was an ordinal variable, this dissertation transformed charge 

degree into two groups of binary variables.  The groups were categorised by “felonies” and 

“misdemeanours and other”.  Table 1b reports that there were a total of 1,006 Felonies, of which 

67.2% were committed by African-American defendants and 32.8% by Caucasian defendants.   

The data was narrowed down to 6,150 unique appearances and of these: 3,696 were 

African-American (r=b) and 2,454 were white (r=w); 2,867 were recidivists (Y=1) and 3,283 non-

recidivists (Y=0); 4931 male defendants (s=m) and 1,219 female defendants (s=f) (Table 2). 
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Table 2 reports proportions and average scores from three variables, recidivism outcome, race 

and sex, or any combination of the three (one outcome can be conditioned against either one or 

both of the corresponding variables).  For example, imagine a defendant was drawn at random 

from the “recidivating” sub-population.  Table 2 would report there would be an 84.4% chance 

of a male recidivist being drawn and a 66.3% chance of an African-American being drawn.  

Applying the same process, we can, for example, also condition ‘race’ on two variables.  For 

example, if a defendant was drawn at random from the “recidivating and male” subgroup, there 

would be a 68.3% chance of an African-American male recidivist being drawn. 

Another noteworthy observation is that African-Americans have risk scores that are on 

average 1.44 times higher than Caucasians (Table 2).  Furthermore, Fig 2 and Fig 3 illustrate how 

the distribution of these risk scores are skewed toward low-risk brackets for the white group while 

the distribution of risk scores for African-Americans is uniform across all levels of risk.
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 Prediction algorithm  

This research paper engineered an original and novel architecture using Microsoft Excel and 

“@Risk Solver” software for constrained optimisation.  The system runs iterative solutions that 

predict recidivism.   

To begin the design process, defendants are classified as positive or negative instances of a 

given property.  A positive instance is where (s)he possesses the relevant property while a 

negative instance is where (s)he does not possess the property in question.  In the criminal justice 

setting, a positive instance is where the defendant recidivated (Y=1).  Similarly, if the defendant 

never recidivated, then the (s)he is referred to as having a negative instance (Y=0).   

To estimate the probability that a defendant will recidivate, we start with the following 

expression: 

𝑃 = 𝑃𝑟(𝑌 = 1|𝑋𝑖) 1 

That is the probability that an individual with attributes 𝑋𝑖 will be a positive instance.  We denote 

𝑋 by the vector for all 𝑋𝑖 such that 𝑋 = [𝑋1, 𝑋2,⋯,𝑋𝐽] and 𝐽 = 𝑛𝑤 + 𝑛𝑏 where 𝑛𝑤 denotes the total 

number of white defendants 𝑛𝑏, the total number of black defendants. A logistic framework was 

chosen as it yields well to such measures of deriving probability estimates and corresponding risk 

scores.  Using the logistic formula, the log-odds is a linear function of 𝑋𝑖: 

 

𝑙𝑛 (
𝑃

1 − 𝑃
) = ∑ 𝛽𝑘𝑋𝑘𝑖

𝑘

2 

𝑃

1 − 𝑃
= 𝑒𝛽0+𝛽1𝑋1𝑖+⋯+ 𝛽𝑘𝑋𝑘𝑖  3 

𝑃(𝛽, 𝑋𝑖) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1𝑖+⋯+ 𝛽𝑘𝑋𝑘𝑖)
 4 
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That is the probability a defendant recidivates conditional on 𝑋𝑖.  Note that the estimate is not 

binary but instead a continuous probability estimate where 𝑃 ∈ (0,1).   

 

The primary goal in mind when devising a risk tool is to predict future offenders and non-

offenders as accurately as possible.  Having this objective in mind, we solve for 𝛽 values that 

maximise the following function:  

∏  [
1

1 + 𝑒−(𝛽0+𝛽1𝑋1𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖)
]  ∗ ∏  [1 −

1

1 + 𝑒−(𝛽0+𝛽1𝑋1𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖)
]

𝑖𝜖𝑁𝑅𝑖𝜖𝑅

5 

 

𝑅 denotes the subset of observed recidivists, and 𝑁𝑅 denotes the subset of non-recidivists.  I refer 

to the product of the 𝑖 ∈ 𝑅 terms as the LHS of expression (5) and the product of the 𝑖 ∈ 𝑁𝑅 terms 

as the RHS of the expression.  The LHS is the product of all recidivism probabilities for the subset 

of defendants who went on to recidivate.  The RHS is the product of all non-recidivism 

probabilities for the subset of all defendants who did not recidivate.   

Expression (5) is the probability of observing everyone in 𝑅 re-offending and everyone in 𝑁𝑅 

not re-offending.  As its value approaches 1, the function begins to reflect (with increasing 

accuracy) the likelihood of the recidivism pattern described by the sets 𝑅 and 𝑁𝑅.  Therefore, our 

objective is to find the solution vector 𝛽̂ = [𝛽̂0, 𝛽̂1,⋯,𝛽̂𝐽] that maximises the above function.  It is 

conventional to work with the log transform of equation (5), so we maximise the following 

function, denoted 𝐹(𝛽, 𝑋): 

 

∑ 𝑙𝑛

𝑖∈𝑅

[
1

1 + 𝑒−(𝛽0+𝛽1𝑋1𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖)
] + ∑ 𝑙𝑛

𝑖∈𝑁𝑅

[
1

1 + 𝑒−(𝛽0+𝛽1𝑋1𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖)
] 6 

 

5.1 Bin and score assignment process 

The methodology in this paper of mapping probability estimates to risk bins follows a widely 

used convention in this literature.  The convention arises because scores are simpler for users of 
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the risk tool to work with.  The probability estimate 𝑃(𝛽̂, 𝜎) for an individual with attribute vector 

𝑋𝑖 = 𝜎 is mapped to a risk bin, 𝜃𝑘 (𝑃(𝛽̂, 𝜎)) ∈ {1,2, … , 𝑘}, where 𝑘 denotes the number of bins.  

Each bin has equal ‘probability width’.  That is, 𝜃𝑘(𝑝) = 1 if 0 ≤ 𝑝 ≤ 1/𝑘 and 𝜃𝑘(𝑝) = 𝑖 > 1 if  

(𝑖 − 1)/𝑘 < 𝑝 ≤ 𝑖/𝑘.  For example, in a 10-bin scoring system, 𝜃10(𝑝) = 1 if 0 ≤ ρ ≤ 0.1, 

𝜃10(𝑝) = 2 if 0.1 < ρ ≤ 0.2 and so forth.   

Risk scores are assigned for each defendant, based on the bin number they are partitioned 

into.  The following equation denotes a defendant’s risk score, where 𝑆𝜎
𝑘  is a normalised value 

of 𝜃𝑘[𝑃(𝛽,̂ 𝜎)]: 

 

𝑆𝜎
𝑘 =

𝜃𝑘[𝑃(𝛽,̂ 𝜎)]

𝑘
 

 

For example, in a 10-bin scoring system, if 𝑃 = 0.45, this gets mapped to bin 5 and hence to a 

‘normalised’ score of 0.5. 

5.2 Formalising fairness 

Accurately predicting future recidivism is the embodiment of any probabilistic classification in 

sentencing decisions and is a central objective for any planner.  However, in a world with an ever-

widening gap in inequality, a shifting emphasis on the creation of fair outcomes for different 

groups is taking precedence.   

To facilitate comparison with previous work, this paper revisits three pre-existing fairness 

notions; balance for the positive class, balance for the negative class and calibration within 

groups.  Fairness notions are designed with the purpose of reducing prejudice from risk tools.  

Determinations must be non-discriminatory and fair in sensitive features, such as race and gender.  

Each notion addresses the relative treatment of different demographic groups so that one group is 

not systematically favoured more than the other.  The group of defendants with positive instances 

is the positive class and the group of defendants with negative instances are the negative class.   
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5.2.1 Class balance 

The first fairness constraint we explore can be expressed in the equation (A), below.  The average 

(expected) risk score assigned to the members of the African-American group (𝑟 = 𝑏) for the 

positive class (𝑌 = 1) should equal the average (expected) risk score assigned to the members of 

the Caucasian group (𝑟 = 𝑤) who also belong to the positive class, where 𝑟 denotes race.  This 

is known as balance for the positive class and may be formalised as follows: 

𝐸[𝑆𝜎
𝑘|𝑌 = 1, 𝑟 = 𝑏] = 𝐸[𝑆𝜎

𝑘|𝑌 = 1, 𝑟 = 𝑤] 𝐴 

The second fairness criteria, expressed by the equation below (B), is defined as balance for 

the negative class.  The average risk score assigned to the members of the African-American 

group (𝑟 = 𝑏) for the negative class (𝑌 = 0) should equal the average risk score assigned to the 

members of the Caucasian group who also belong to the negative class.   

𝐸[𝑆𝜎
𝑘|𝑌 = 0, 𝑟 = 𝑏] = 𝐸[𝑆𝜎

𝑘|𝑌 = 0, 𝑟 = 𝑤] 𝐵 

The COMPAS risk tool incessantly assigned African-Americans from the negative class 

higher-risk scores than Caucasians who also belonged to the negative class.  Similarly, the risk 

tool assigned Caucasians from the positive class lower risk scores than African-Americans who 

also belonged to the positive class.  Thus, the imposition of fairness constraints in (A) and (B) 

aim to ameliorate this discrepancy of false findings between the two groups.  However, as detailed 

in the prior sections, the enforcement of these fairness constraints are not inherently ‘free’ due to 

complex trade-offs. 

5.2.2 Calibration within groups 

A third (fairness) constraint which a planner may choose to satisfy is that of a model that is free 

from predictive bias.  Calibration within groups fits this definition and has been a widely accepted 

and adopted empirical fairness assessment.  Calibration within groups requires that a score 𝑆𝜎 =

𝑠 reflects the same probability of recidivism irrespective of the individuals’ race group 

membership.  That is, the following is true for all values of 𝑠 ∈ {
1

𝑘
,

2

𝑘
, … ,

𝑘

𝑘
}. 
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𝜌[𝑌 = 1|𝑟 = 𝑏, 𝑆𝜎
𝑘 = 𝑠] = 𝜌[𝑌 = 1|𝑟 = 𝑤, 𝑆𝜎

𝑘 = 𝑠] 𝐶 

The rest of this paper focuses on (A) and (B) since only two of the three fairness constraints can 

be imposed simultaneously (given Kleinberg et al.’s result).  This decision to focus on (A) and 

(B) is made for convenience.  A limitation for excluding constraint (C) is that we do not get to 

directly observe the ‘violation’ to (C) when satisfying conditions (A) and (B) simultaneously.  It 

may be possible that experiments conducted in this paper might have very different outcomes (in 

efficiency rankings) if we were to include a notion (C).  Studying the interaction(s) between a (C) 

constraint with all other design parameters (e.g., fairness constraints, LL or a ROC metric for 

accuracy and a bin-scoring system), would make for an exciting future research challenge.   

5.3 Verifying Chouldechova’s results 

Findings indicate that COMPAS is indeed well-calibrated under a 10-bin scoring system (Fig 4).  

Furthermore, the COMPAS tool satisfied the fairness notion of predictive parity (Fig 5).  

ProPublica’s assertion that “FPRs are approximately two times higher for blacks and FNRs (error 

rates) are almost two times higher for whites”, by this paper’s analysis, is accurate when the cut-

off (denoted by (𝑆𝐻𝑅) is equal to four as in ProPublica’s analysis: this is illustrated by Fig 6 and 

Fig 7.  Moreover, imbalances in error rates are significantly different between group membership 

at any cut-off threshold: highlighting the incompatibility between error rate balance and 

Predictive parity. 
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 Experimental Results

The previous sections outlined that predictive classifiers cannot satisfy all ‘dimensions’ of 

accuracy, fairness and informativeness simultaneously.  The central design issue is how to 

initialise payoff functions for each of the performance criteria (dimensions) so to maximise 

societal welfare.  We conducted preliminary investigations of assessing relative model 

performances, as captured by the planner’s utility function.  Since we cannot directly observe the 

planner’s utility, this dissertation (i) focuses on identifying Pareto improvements in experiments 

2 and 3 and (ii) quantify the accuracy-fairness trade-off from a particular relaxation of fairness 

constraints in experiment 1.   

6.1 The unconstrained model  

The unconstrained model is a reference or ‘benchmark’ to quantify trade-offs when imposing 

different constraints.  The unconstrained model predicts recidivism using all 12 non-race variables 

(Table 3) and imposes no fairness constraint.  Intuitively, the unconstrained model achieves the 

highest predictive accuracy out of all possible model variants with a resulting LL of 𝐹(𝛽̂, 𝑋) =

−726.15.  Fig 18 illustrates the distribution of probability estimates from the unconstrained 

model.  We observe that the probabilities for the recidivists (Y=1) and non-recidivists (Y=0) are 

accurately distributed by the model for both black and white defendants.   

6.2 The first experiment 

This first experiment evaluates the logistic tool’s accuracy gain by imposing a relaxed version of 

the constraint(s).  We first examine the extent to which each constraint (A) and (B) reduces LL 

relative to the unconstrained model (our preliminary benchmark) and then measure the accuracy 
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gain from relaxing these “strict” constraints.  Furthermore, we compare probability distributions 

between the relaxed and strict versions of the constraint to motivate this discussion on why a 

planner should choose a relaxed version (over the strict version) of the constraint. 

Each constraint (A) and (B) is expressed as an equality, which is the ‘strict’ form.  A strict 

constraint is non-negotiable and binds the algorithm to meet the condition at all costs.  In this 

context, constraints (A) or (B) are satisfied when differences in expected risk scores between 

black and white defendants (LHS-RHS difference) is precisely zero.  Similarly, for each 

constraint, we could think of a ‘relaxed’ form which imposes an upper and lower bound on the 

LHS-RHS difference, perhaps after some ‘normalisation’ of this difference.  A relaxed constraint 

means that the logistic formula can operate within the user-specified upper and lower bounds to 

compute maximum log-likelihood. 

The relaxed version imposed on the risk tool in this paper follows an unpaired two-sample t-

Test to define the upper and lower bounds.  An unpaired t-Test tests the null hypothesis such that 

the population means related to two independent, random samples from an approximately normal 

distribution are equal (Armitage and Berry, 1997).  A t-stat less than 1.96 suggests that differences 

in conditional distributions are not statistically significant at the 5 percent level.  The two-sample 

t-Test formula is as follows: 

𝑡 =
𝑆𝑤̅

𝑘 − 𝑆𝑏̅
𝑘 

√(
𝜎𝑤

2

𝑛𝑤
+

𝜎𝑏
2

𝑛𝑏
)

 

 

The equation above tests the differences in the underlying distributions of average risk scores 

between black and white defendants.  The test was carried out on the positive class if a relaxed 

version of (A) was imposed, and on the negative class if a relaxed version of (B) was imposed.  

Let 𝑤 denote the white defendants and 𝑏 denote the African-American defendants.  The sample 

mean risk scores for any chosen ‘𝑘 bin number’ is denoted by 𝑆𝑤̅
𝑘  and 𝑆𝑏̅

𝑘.  The sample variances 

are 𝜎𝑤
2 , and 𝜎𝑏

2, the sample sizes are 𝑛𝑤, 𝑛𝑏.  
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6.2.1 The ‘strict’ results 

We begin with some notation for convenience purposes.  Let 𝐹̂𝑘
𝜔(𝛺) denote the corresponding 

constrained maximum LL for the model constrained by a 𝑘 −bin, scoring system, where 𝜔 ∈

{𝛼, 𝛾} and 𝛺 ∈ {𝐴, 𝐵, 𝑍}.  The constraints can come in the form of a strict version, 𝛼, or a relaxed 

version, 𝛾.  𝛺 denotes whether constraint (A) or (B) or (Z) is imposed across the model and 𝑍 

corresponds to satisfying the joint conditions of (A) and (B) simultaneously.  Moreover, we 

abbreviate a model constrained by the foregoing design parameters in this form: “𝜔𝛺𝑘”.  For 

example,  𝛼𝑍9 corresponds to a model constrained by a strict version of (Z) and using 𝑘 = 9 bins 

as a scoring system.  

The following example illustrates the maximum log-likelihood for all models constrained by 

𝛼𝛺10.  A bin-scoring system of  𝑘 = 10 is used to make the comparison since it replicates the 

scoring system from the ProPublica dataset.  Table 4 reports that model constrained by 𝛼𝐴10 

computes a maximum LL, 𝐹̂10
𝛼 (𝐴) = −3793.09.  Similarly Tables 4 and 6 reports that the models 

constrained by  𝛼𝐵10 and 𝛼𝑍10 compute a maximum LL, 𝐹̂10
𝛼 (𝐵) = −3834.17 and 𝐹̂10

𝛼 (𝑍) =

−4076.82, respectively.  Thus 𝐹̂10
𝛼 (𝐴) > 𝐹̂10

𝛼 (𝐵) > 𝐹̂10
𝛼 (𝑍). 

The underlying probability distributions for the three models constrained by 𝛼𝛺10 are 

reported in Figs 14 - 17.  To better understand how the model is assigning the probability estimates 

to defendants, we partition the probabilities by outcome (Y) and race.  We observe that all 

probabilities for the model constrained by 𝛼𝑍10 are confined within the range of 0.4 and 0.5 

(Table 12 reports summary statistics for these probabilities).  The story unfolds from here.  The 

pattern we observe in Figs 14 – 17 (strict constraints) is that as k decreases, the probability 

distributions between the two predicted classes (recidivists and non-recidivists), diverge.  Thus, 

a decreasing 𝑘 implies that our logistic tool can predict recidivists and non-recidivists more 

accurately.  We discuss the relationship between 𝑘 and LL in more detail in experiment 3. 
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6.2.2 The ‘relaxed’ results 

This section highlights why planners should consider using the relaxed version of a constraint 

over the strict version.  Consider the following arbitrary example.  Tables 7 – 10 report that the 

three models constrained by 𝛾𝛺10 compute the same maximum log-likelihood such that 𝐹̂10
𝛾 (𝑍) =

𝐹̂10
𝛾 (𝐴) = 𝐹̂10

𝛾 (𝐵) = −1161.90.  Table 10 reports that the LHS-RHS difference in 𝐹̂10
𝛾 (𝐴) 

produces |T| = 1.526 and the LHS-RHS difference in 𝐹̂10
𝛾 (𝐵) produces |T| = 1.959.  Moreover, 

Table 10 reports that a model constrained by 𝛾𝛺𝑘 for any constraint 𝛺 and 𝑘 value sampled in 

this paper, satisfies the condition |T| < 1.96.  Thus risk scores are not statistically significantly 

different between the LHS and RHS at the 5 percent level (constraint (Z) is, of course, satisfied 

if both (A) and (B) are).  This suggests for a partial relaxation of the constraint, accuracy of the 

prediction algorithm improves by over 300 percent. 

We can glean a lot of information by examining the probability distributions for each of the 

constraints.  Figs 10 - 13 exhibit the distributional probability estimates for all relaxed versions 

of the model.  By examining these distributions, we observe how the risk tool “searches” for 

probabilities close to zero when Y=0 and close to one when Y=1 subject to the 𝛺 constraint.  The 

patterns we encounter from the probability distributions in the relaxed versions of the constraint(s) 

resemble the same pattern generated by the corresponding estimates from the unconstrained 

model.  In fact, this dissertation makes the striking discovery that a model constrained by 𝛾𝛺9, 

“finds” probability estimates that are not statistically significantly different from the estimates 

generated by the unconstrained model.  To be sure, this paper t-Tests the probability estimates 

generated from the model constrained by 𝛾𝛺9 against the corresponding estimates generated from 

the unconstrained model.  The result: a t-stat of 1.72, suggesting that the probabilities are not 

statistically significantly different at the 5 percent level (Table 13).   

6.2.3 Comparative assessment 

We compare the qualitative difference (expressed in LL) and quantitative difference (expressed 

in fairness and informativeness) between the relaxed version of the constraint and: (1) 



31 

unconstrained benchmark; (2) the strict version.  Let 𝑢̂𝑘
𝜔(𝛺) represent the optimal payoff utility 

for a planner, where are 𝜔, 𝛺 and 𝑘 represent the same parameters that were defined the maximum 

LL function 𝐹̂𝑘
𝜔(𝛺).  The utility function represents the maximised ‘efficiency’ of the model 

(performance in the accuracy, fairness and informativeness dimensions together).   

This first experiment highlights the accuracy gain from relaxing the constraint.  A user can 

think of 𝑢̂𝑘
𝜔(𝛺) as a function of the constraint slackness level |T|.  A planner with a well-defined 

MRS between |T| and accuracy (LL) could be compared to a trade-off rate in order to find the 

optimal compromise.  Since the MRS will change according to differences in planners utility 

functions, we cannot say whether or not a particular planner will find the trade-off worth making.    

The accuracy gain from relaxing a constraint, however, is quite dramatic.  Fig 10 and Fig 14 

illustrate the differences in how these probability distributions (between strict and relaxed 

versions of the constraint) are formed and help to visualise really how tight these constraints are.  

The implied distribution of risk scores is much more plausible under the relaxed constraint and 

gives strong motivation for relaxing them.   

6.3 The second experiment 

This section expounds on how a designer can improve efficiency of their RPIs through ‘cost-free’ 

constraint implementation.  We saw in the last section that 𝐹̂10
𝛾 (𝑍) = 𝐹̂10

𝛾 (𝐴) = 𝐹̂10
𝛾 (𝐵),  thus our 

second experiment illustrates that a designer who chooses to constrain a model with the relaxed 

constraints of (A) or (B) can systematically satisfy a relaxed version of (Z) without costing the 

model any accuracy and/or any informativeness.  In other words, any model constrained by 𝛾𝑍𝑘 

computes the same maximum LL as a model constrained by 𝛾𝐴𝑘 or 𝛾𝐵𝑘 and this is true for any 

𝑘 value that we sampled in this paper 𝑘 ∈ {1, 2, 9, 10} (Tables 7, 8 and 9).  Indeed, this Pareto 

improvement does not transcend to a strict version as reported in Tables 4 – 6.  This strict 

improvement in fairness, at no cost to accuracy or informativeness, implies that a Pareto 

improvement is possible if a model is operating under the constraints 𝛾𝐴𝑘 or 𝛾𝐵𝑘.  The resulting 

gain in efficiency (planner utility) can be expressed as follows: 𝑢𝑘
𝛾(𝐴) = 𝑢𝑘

𝛾(𝐵) < 𝑢̂𝑘
𝛾

(𝑍).   
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6.4 The third experiment 

This final experiment illustrates why choosing a higher bin-scoring number (𝑘-value) is more 

informative to a user and why we might expect a trade-off between accuracy and bin number, for 

a given fairness constraint.  Findings illustrate the unique possibility of a Pareto improvement 

through informativeness and accuracy dimensions for a given fairness rule. 

To show why a higher 𝑘-value is more informative, imagine a model constrained by a one-

bin scoring system.  All probability estimates are assigned to the same risk bin, 𝜃1, thus the 

average normalised score also is equal to 1.  Since there is no variation in risk scores, what would 

a judge do with such a list – where all defendants were assigned the same risk score, 𝑆𝜎 = 1?  

This example highlights the problem with choosing a low-numbered bin-scoring system: Fewer 

bins are less informative to the user about a defendant's level of risk. 

As 𝑘 approaches infinity, the bin-constraint requires average estimated recidivism 

probabilities to coincide across groups.  For example, imposing (A) with 𝑘 = ∞ would be the 

same (i.e., produce the same parameter estimates and the same maximised LL) as imposing a 

constraint which required the average estimated recidivism probability across white recidivists to 

equal the average estimated recidivism probability across black recidivists.   

6.4.1 The pattern of a higher 𝒌 

From the first experiment, we saw how “confining” a strict constraint can be – due to how the 

logistic tool distributes its probability estimates across classes (positive and negative).  As we 

move from 𝑘 = 10 to 𝑘 = 2 (Figs 14 – 17), we observe how the probability distributions of Y=1 

and Y=0 diverge.  This ‘divergence’ corresponds to an improving maximum LL as the model can 

predict the “correct” outcomes for the two classes more accurately.   

As we discover, there is one consistent “violation” to this trend (of a decreasing 𝑘 for an 

increasing LL) when imposing a strict version of the constraint, and that is when 𝑘 = 3.  There 

are a couple of other “exceptions” (such as a model constrained by 𝛼𝐴10 or 𝛼𝐵10), but these are 

less interesting as they do not translate to the constraint (Z) or the relaxed version.   
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We wanted to confirm this trend of a model constrained by a higher 𝑘 leads to, in most cases, 

a lower maximum LL, but instead for any 𝑘 ∈ {1, 2, … , 10}.  Due to time constraints, we built 

two three-variable-models to analyse the trend using age, gender and the number of prior offences 

as variable inputs, and each model used either a strict version of the (A) constraint or (B) 

constraint.  Figs 8 and 9 confirm that the ‘trend’ for all 𝑘 values persist and the same violation at 

𝑘 = 3, also persists. 

6.4.2 Violation of the 𝒌 rule 

While choosing a lower 𝑘 value achieves results in a more accurate model, the consequence is 

that informativeness is (in most cases) compromised.  The underlying Pareto improvement stems 

from the “violation” cases, where a planner can improve performance in two dimensions at no 

cost.  We saw the unique case where a model constrained with 𝑘 = 3 bins computes a higher 

maximum LL than does a model constrained with 𝑘 = 2  bins, for any constraint 𝛺 and type 𝜔.  

Findings, as reported by Tables 4 – 9, indicate that 𝐹̂3
𝜔(Ω) > 𝐹̂2

𝜔(Ω) for any constraint 𝛺 and type 

𝜔.  Thus, a model constrained by 𝜔𝛺3 unambiguously improves performance in two dimensions 

(informativeness and accuracy) over a model constrained by 𝜔𝛺2 for a given fairness rule.   

Many traditional classifiers use this setting of a 2-bin condition (low risk and high risk), which 

is analogous to a binary classifier, even if they do not always set the bin boundary at 0.5.  If 

instead, a scoring system of 𝑘 = 3 was chosen (low, medium and high risk) over 𝑘 = 2, the 

objective improvement in the payoff function can be equivocally expressed as 𝑢̂3
𝜔(𝛺) > 𝑢̂2

𝜔(𝛺).  

Solution betas, 𝛽̂𝑘, for all models (constrained and unconstrained) are reported in Tables 4 – 9. 

6.4.3 Understanding the violation 

To see why a 3-bin condition can be satisfied when a 2-bin condition is not, suppose αR𝛿 is 

the proportion of recidivists assigned to bin 𝛿.  We assume 𝑅 ∈ {𝐵, 𝑊} where 𝐵 denotes black 

recidivists, 𝑊 denotes white recidivists, with 𝛿 ∈ {1,2} for a 2-bin system and 𝛿 ∈ {1,2,3} for a 

3-bin system.  The total number of recidivists in bin 𝛿 is denoted by 𝑛𝑅𝛿.  Thus, αB1 + αB2 = 1 
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and similarly, αW1 + αW2 = 1.  It is easy to see that in a 2-bin scoring system, constraint (A) is 

met if, and only if, αB1 =  αW1: 

 

(1)𝑛𝐵1 + (2)𝑛𝐵2

𝑛𝐵
=

(1)𝑛𝑊1 + (2)𝑛𝑊2

𝑛𝑊
 1 

(1)αB1 + (2)(1 − αB1) = (1)αW1 + (2)(1 − αW1) 2 

αB1  =  αW1 3 

 

Now suppose we use a 3-bin scoring system, 𝑘 = 3, thus 𝛿 ∈ (1,2,3).  Since 𝛼𝐵1 + 𝛼𝐵2 + 𝛼𝐵3 =

1  and 𝛼𝑊1 + 𝛼𝑊2 + 𝛼𝑊3 = 1, it is easy to see that constraint (A) is met if, and only if,   𝛼𝐵3 −

𝛼𝐵1 = 𝛼𝑊3 − 𝛼𝑊1 

 

(1)𝑛𝐵1 + (2)𝑛𝐵2 + (3)𝑛𝐵3

𝑛𝐵
=

(1)𝑛𝑊1 + (2)𝑛𝑊2 + (3)𝑛𝑊3

𝑛𝑊
 4 

(1)𝛼𝐵1 + (2)(1 − 𝛼𝐵1 − 𝛼𝐵3) + (3)𝛼𝐵3 = (1)𝛼𝑊1 + (2)(1 − 𝛼𝑊1 − 𝛼𝑊3) + (3)𝛼𝑊3 5 

 𝛼𝐵3 − 𝛼𝐵1 = 𝛼𝑊3 − 𝛼𝑊1 6 

 

Consider an arbitrary example where 𝑛𝐵 = 𝑛𝑊 = 1000.  Suppose a particular model assigned 

recidivism probabilities as follows.  Of the black recidivists, 250 were assigned probabilities 

below 0.3 and the other 750 probabilities above 0.7.  Of the white recidivists, 125 were assigned 

probabilities below 0.3, another 625 were assigned probabilities above 0.7, and the remaining 250 

were each assigned a probability between 0.55 and 0.6.  This data is reported neatly in Table 11. 

In this example, we meet the 3-bin version of (A) but not the 2-bin version of (A).  Plugging 

in the data from the example above, when 𝑘 = 2, we get: 

 

(1)(250) + (2)(750)

1000
≠

(1)(125) + (2)(875)

1000
  

 

The equation above deduces to 1.75 ≠ 1.85.  Thus, balance for the positive class is not satisfied 

in a 2-bin scoring system with this data.  Now, by plugging in the data when 𝑘 = 3, we get: 
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(1)(250) + (2)(0) + (3)(750)

1000
=

(1)(125) + (2)(250) + (3)(625)

1000
 

The equation above deduces to 2.5 =  2.5.  Thus, balance for the positive class is satisfied in a 

3-bin scoring system with this data. 
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 Conclusion and further research

The Algorithmic Accountability Bill was approved in 2017 to address discrimination by 

regulating privatised RPIs.  Following ProPublica’s allegations, the challenge of creating a 

probabilistic classification that was equally fair to different groups captured the spotlight.  

Scholars and practitioners alike, have since stressed the mutual incompatibility between different 

notions of fairness.  Despite the incompatibility, this dissertation motivates the discussion that we 

still can improve efficiencies in prediction tools.  It attempts to clarify the gaps in the research, 

which also helps to establish the novelty of this work.  

This research paper studied the sensitivity between the performance of the logistic tool and 

the chosen design parameters.  I restricted attention to three dimensions and ran simulations that 

demonstrated the following:  the relaxed version of a constraint allows significantly better 

accuracy than does a system constrained by the strict criterion, such that 𝐹̂𝑘
𝛾

(𝛺) > 𝐹̂𝑘
𝛼(𝛺) for any 

constraint 𝛺 and bin number 𝑘;  Figs 14 - 17 exhibit the probability distributions for strict versions 

of (Z), and by examining the divergence in these class distributions, the particular pattern we 

observe of a decreasing 𝑘 with an increased maximum LL, is revealed;  payoffs for the relaxed 

versions of the constraint can be expressed in the following functional form, 𝑢̂9
𝛾(𝛺) > 𝑢̂3

𝛾(𝛺) >

𝑢̂2
𝛾(𝛺);  A model constrained by 𝛾𝛺9 finds probability estimates that are not statistically 

significantly different to the estimates generated by the unconstrained model;  for any choice set 

𝑘 ∈ {2, 3, 9, 10} imposing relaxed versions of either (A) or (B) will unambiguously satisfy the 

relaxed version of (Z);  experimental findings confirmed an improvement in performance in two 

dimensions (accuracy and informativeness) at a particular violation to the “𝑘-rule” for a given 

fairness constraint.  The corresponding objective improvement in the payoff function is expressed 

as 𝑢̂3
𝜔(𝛺) > 𝑢̂2

𝜔(𝛺) for any constraint 𝛺 and type 𝜔.   
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7.1 Limitations 

A key issue when conducting this research stems from the biases which might be implicitly 

embedded into the data.  The assumption used throughout this paper is that observed recidivism 

is a suitable outcome measure for evaluating fairness.  However, in the real world we only observe 

whether the criminal was re-convicted and not whether they did, in truth, re-offend.  It is widely 

accepted knowledge that many criminal offenders are simply never identified.  If a non-trivial 

fraction of individuals were identified as non-offenders but did in truth re-offend, then internal 

validity is compromised and the empirical assessments in this paper may be overstated. 

7.2 Future work 

A future goal of this research would be to build a model that is ‘accurate out-of-sample’ and one 

that serves a practical purpose outside of the criminal justice setting.  As a robustness measure, I 

would employ a ‘test’ or ‘hold out’ data set.  Since the prediction algorithm (formulated in this 

dissertation) had access to defendants’ “outcomes” (recidivists and non-recidivists), the model 

might appear to perform well since it is evaluating data that it has already seen.  In the future, to 

avoid the model being prone to a case of “unhelpful human data mining”, I would randomly 

partition the data into “40% training, 40% imputation and 20% test data sets” (Kleinberg, 

Lakkaraju, et al. 2018).  Such a procedure, of training the RPI on a partitioned dataset and then 

evaluating the performance on the ‘hold-out data set, would not be a difficult task to carry out 

(but would be a welcomed addition to help validate findings). 

If different judges sentenced identical populations at different rates, then we are presented with 

another case of implicit bias being embedded in the training data.  Since we cannot faithfully 

observe the full breadth of unconstrained judicial preferences, we could have applied a common 

solution to this problem by imposing independency constraints (Calders, Kamiran, and 

Pechenizkiy 2009).  Independency constraints are commonly used to offset or reverse the effect 

of bias by making the classifier’s outcome independent of any sensitive variables, e.g., race, sex 

or religion.  The fundamental problem with this method is that the more independent a model is 

of its sensitive variables, generally the lower the accuracy is of the classifier.  For example, if ZIP 
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codes were to exhibit a high degree of collinearity with ethnicity we might see a parallel drawn 

with the practice of redlining, e.g., where applicants were denied loans due to their residential 

area in which they inhabit.   

If we can encourage practitioners to adopt the framework outlined in this dissertation, a fuller 

evaluation of the system should be carried out to encompass aspects of both validation and 

verification (and the two above examples could be a start!).  A challenge would be building a 

refined architecture that scales well in higher dimensions.   

7.3 Final thoughts 

The initial question that inspired and drove this research was “how can algorithmic tools used in 

predictive analytics assist their human decision-makers in ameliorating potential discrimination 

and how should they be deployed to optimise the quality and fairness of social decision-making?  

Is there a trade-off between accuracy and fairness, and if so, how is this best managed?”  

The body of literature in prediction algorithms and machine learning is so vast that it made 

for a very challenging research question.  The more time I spent amongst the underlying literature 

and discussing the question with my supervisors, my domain understanding began to expand and 

as a result, the research became increasingly fascinating. 

When writing this dissertation, I had the goal of developing a framework that would keep 

pace with innovations in contemporary literature.  Applications of prediction techniques (as used 

in this paper) are as readily applicable in other domains such as: assessing the likelihood of a 

customer defaulting on a loan; identifying risk factors for different diseases; predicting the 

likelihood of voting for a particular candidate in an election; predicting which teacher will have 

the highest value-added to an institution (Rockoff et al. 2011); and in targeting health inspections 

(Kang et al. 2013).  These results illustrate just a few examples of what we could even conceive 

to be predictable – the opportunities are almost endless.   

The core of this research challenge was to present ‘compelling enough’ motivation for 

adopting the framework built in this paper, that was both feasible and pragmatic.  “Pragmatism 

adopts an engineering approach to research - it values practical knowledge over abstract 

knowledge, and uses whatever methods are appropriate to obtain it” (Easterbrook et al., 2008, 
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page 292).  By combining the literature review findings with practical experimentation, we have 

shown in a pragmatic sense, how the applicability of a harm-reduction framework can be used in 

predictive policing.   Being able to extend the capabilities of the framework to heterogeneous 

domains (or more dimensions) would make for an exciting future research challenge.  In the 

meantime, while we wait for theory to progress, there are practical solutions that can be applied 

to promote improved efficiencies in our social welfare systems.  
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 Figures

 

 

Figure 1: Algorithmic pipeline.  Illustrates the process of mapping probability estimates to scores. 

 

 

Figure 2:  COMPAS risk score distribution for Caucasians 

 

Figure 3: COMPAS risk score distribution for African-Americans 

 

Defendant

Criminal characteristics

Algorithm

Prediction

0.4 < 𝑃𝜎 ≤ 10 < 𝑃𝜎 ≤ 0.4

   h   s 

 (𝑠 > 𝑆𝐻𝑅)

Low Risk

(𝑠 ≤ 𝑆𝐻𝑅)



43 

 

 

 

 

Figure 4: Calibration assessment of COMPAS.  Figure illustrates that the tool is in fact well-calibrated as 

score differentials in each “bin” are non-significant.  Note that standard error bars overlap between 

African-Americans and Caucasians at any given score. 

 

 

 

 

Figure 5: Predictive parity assessment of COMPAS.  Figure illustrates that the tool satisfies Predictive 

parity.  Note that standard error bars overlap between African-Americans and Caucasians at all thresholds 

with the exception of 𝑆𝜎
𝑘 = 0 and 𝑆𝜎

𝑘 = 9.  This might be due to the degree of error a decision-maker 

chooses to compare the risk scores between both race groups with.  Differentials are non-significant for all 

other high risk cut-off thresholds. 
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Figure 6:  False positive rate assessment of the COMPAS risk tool.  Figure illustrates that P(S > SHR | Y = 

0, r) for the values of the high risk cut-off thresholds. Figure illustrates that false positive rates between 

group membership are significantly different across all scores where S> SHR. 

 

 

 

 

Figure 7:  False negative rate assessment of the COMPAS risk tool.  Bars represent the expression: P(S ≤ 

SHR | Y = 1, r) for scores from the high risk cut-off thresholds.  Figure illustrates that false negative rates 

between group membership are significantly different across all scores where S≤ SHR.  
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Figure 8:  Sensitivity of accuracy to bin totals – negative class constraint 

 

 

Figure 9:  Sensitivity of accuracy to bin totals – positive class constraint. 

 

 

Figure 10:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a relaxed version of (Z) using a 10-bin scoring system. 
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Figure 11:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a relaxed version of (Z) using a 9-bin scoring system. 

 

 

 

Figure 12:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a relaxed version of (Z) using a 3-bin scoring system. 
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Figure 13:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a relaxed version of (Z) using a 2-bin scoring system. 

 

 

 

 

Figure 14:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a strict version of (Z) using a 10-bin scoring system.
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Figure 15:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a strict version of (Z) using a 9-bin scoring system. 

 

 

 

Figure 16:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a strict version of (Z) using a 3-bin scoring system. 
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Figure 17:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

model constrained by a strict version of (Z) using a 2-bin scoring system. 

 

 

 

Figure 18:  Distribution of probability estimates for the positive (Y=1) and negative (Y=0) classes for the 

Unconstrained model 
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 Tables 

 

 

Table 1a: Summary statistics for African-Americans (r=b) and Caucasians (r=w) 

Variable  mean mean (r=b) mean (r=w) T-test 

Age 
34.73 

(11.91) 

32.74 

(10.96) 

37.73 

(12.75) 
15.91 

      

Ave no. prior offences 
3.70 

(5.03) 

5.16 

(5.67) 

2.43 

(3.79) 
15.49 

      

Risk score 
4.72 

(2.85) 

5.79 

(2.86) 

3.78 

(2.59) 
23.29 

      

Violent risk score 
3.82 

(2.52) 

4.43 

(2.59) 

2.95 

(2.20) 
23.52 

 

 

 

 

 

Table 2b: Charge degree for African-Americans (r=b) and Caucasians (r=w) 

 

 

 

 

  

 

 

 

Variable  total r=b r=w 

Felonies 1006 676 330 

Misdemeanors & other  2055 1360 695 
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Table 3: Summary of risk scores by Recidivism, Race and Sex 

 

Label Total Average risk score % of subset % of total Average risk score ratio of subset  Average risk score ratio (of total) 

r=b 3696 5.37  - 60.10%  - 1.14 

r=w 2454 3.74  - 39.90%  - 0.79 

s=f 1219 4.36  - 19.82%  - 0.92 

s=m 4931 4.81  - 80.18%  - 1.02 

Y=1 2867 5.79  - 46.62%  - 1.23 

Y=0 3283 3.78  - 53.38%  - 0.80 
       

Label Total Average risk score =  (𝑟|𝑌) % of total Average risk score ratio ∈ (𝑌) Average risk score ratio (of total) 

Y=1, r=b 1901 6.29 66.31% 30.91% 1.09 1.33 

Y=1, r=w 966 4.82 33.69% 15.71% 0.83 1.02 

Y=0, r=b 1795 4.40 54.68% 29.19% 1.16 0.93 

Y=0, r=w 1488 3.03 45.32% 24.20% 0.80 0.64 

       

Label Total Average risk score =  (𝑠|𝑌) % of total Average risk score ratio ∈ (𝑌) Average risk score ratio (of total) 

Y=1, s=f 446 5.49 15.56% 7.25% 0.95 1.16 

Y=1, s=m 2421 5.85 84.44% 39.37% 1.01 1.24 

Y=0, s=f 773 3.70 23.55% 12.57% 0.98 0.79 

Y=0, s=m 2510 3.80 76.45% 40.81% 1.01 0.81 

       

Label Total Average risk score =  (𝑠|𝑟, 𝑌)   =  (𝑟|𝑠, 𝑌)   

Y=1, r=b, s=f 247 5.95 12.99%  55.38%  

Y=1, r=b, s=m 1654 6.34 87.01%  68.32%  

Y=1, r=w, s=f 199 4.92 20.60%  44.62%  

Y=1, r=w, s=m 767 4.79 79.40%  31.68%  

Y=0, r=b, s=f 405 4.03 22.56%  52.39%  

Y=0, r=b, s=m 1390 4.50 77.44%  55.38%  

Y=0, r=w, s=f 368 3.34 24.73%  47.61%  

Y=0, r=w, s=m 1120 2.93 75.27%  44.62%  
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Table 4: Solution values and maximum log-likelihood for unconstrained model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Solution values and maximum log-likelihood using a “strict” version of (Z) 

 

 

 

 

  

Var (table 11 Value 

B0 -5.0318 

B1 - # Priors 0.0650 

B2 - Age -0.0392 

B3 - Gender -0.0262 

(F1) 9.8124 

(F2) 8.6303 

(F3) 7.9830 

(F6) 12.787 

(F7) 41.790 

(M1) 8.3008 

(M2) 8.4310 

(MO3) 9.0150 

(CO3) 5.6840 

𝑭̂(𝜷, 𝑿)  -722.65 

Var k=2 k=3 k=9 k=10 

B0 0.0359 -0.5449 0.0453 -0.0234 

B1 - # Priors -0.0002 0.0062 0.0013 0.0010 

B2 - Age 0.0077 -0.0217 -0.0290 -0.0055 

B3 - Gender -0.0004 -0.0017 -0.0032 -0.0046 

(F1) 2.1378 1.0932 0.0054 0.0555 

(F2) 2.7719 1.1372 0.1713 0.1069 

(F3) 2.5940 1.0596 0.2220 0.0909 

(F6) 2.3584 -0.2045 0.0439 0.1009 

(F7) 4.7754 -0.0375 0.0041 0.1335 

(M1) 2.6131 1.1069 0.2208 0.1011 

(M2) 2.8330 1.1203 0.1812 0.0976 

(MO3) 3.4017 1.1321 0.0410 0.1152 

(CO3) -0.0136 0.1292 0.0862 -0.1168 

𝑭̂𝒌
𝜶(𝒁)  -2896.88 -2878.40 -3962.07 -4076.82 
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Table 6: Solution values and maximum log-likelihood using a “strict” version of (A) 

Var k=2 k=3 k=9 k=10 

B0 0.0359 -0.5560 0.0502 0.0812 

B1 - # Priors -0.0002 0.0061 0.0014 0.0021 

B2 - Age 0.0077 -0.0117 -0.0457 -0.0778 

B3 - Gender -0.0004 -0.0017 -0.0042 -0.0069 

(F1) 2.1378 1.1678 0.0096 0.0243 

(F2) 2.7719 1.1436 0.2069 0.0419 

(F3) 2.5940 1.1174 0.2387 1.1171 

(F6) 2.3584 -0.1459 0.0732 -0.8208 

(F7) 4.7754 1.1733 0.0070 0.0829 

(M1) 2.6131 1.1211 0.2397 0.1680 

(M2) 2.8330 1.1356 0.2474 0.0397 

(MO3) 3.4017 1.2002 0.0660 -0.0095 

(CO3) -0.0136 0.5931 0.0988 -0.4552 

𝑭̂𝒌
𝜶(𝑨)  -2896.88 -2849.04 -3905.39 -3793.09 

 

 

 

 

 

Table 7: Solution values and maximum log-likelihood using a “strict” version of (B). 

Var k=2 k=3 k=9 k=10 

B0 0.0359 -0.5449 0.0507 0.0041 

B1 - # Priors -0.0002 0.0062 0.0023 0.0002 

B2 - Age 0.0077 -0.0217 -0.0269 -0.0009 

B3 - Gender -0.0004 -0.0017 -0.0036 0.0000 

(F1) 2.1378 1.0932 -0.0690 0.0452 

(F2) 2.7719 1.1372 0.2038 0.0062 

(F3) 2.5940 1.0596 0.2462 0.3975 

(F6) 2.3584 -0.2045 0.0878 -0.6948 

(F7) 4.7754 -0.0375 0.3402 1.1303 

(M1) 2.6131 1.1069 0.2441 0.3994 

(M2) 2.8330 1.1203 0.2411 0.3771 

(MO3) 3.4017 1.1321 0.0917 0.0243 

(CO3) -0.0136 0.1292 0.2131 0.3046 

𝑭̂𝒌
𝜶(𝑩)  -2896.88 -2878.40 -3913.47 -3834.17 
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Table 8: Solution values and maximum log-likelihood using a “relaxed” version of (Z). 

Var k=2 k=3 k=9 k=10 

B0 -8.7718 -4.7098 -4.3124 -4.1170 

B1 - # Priors 0.0791 0.0355 -0.0014 -0.0554 

B2 - Age 6.9274 2.4306 -2.0171 -2.7171 

B3 - Gender 0.0367 0.0311 0.0317 0.0447 

(F1) 10.0974 10.5531 19.2753 23.6664 

(F2) 9.8509 5.3681 4.8435 5.0012 

(F3) 9.7109 5.4825 6.8125 6.5560 

(F6) 47.4068 -2.4421 2.1185 -3.3132 

(F7) 15.1000 2.7605 33.6485 16.3794 

(M1) 10.4637 6.6904 6.1655 6.2126 

(M2) 9.8060 6.6111 7.4651 6.5008 

(MO3) 9.6348 3.6911 5.8234 4.3934 

(CO3) 5.0617 -4.8416 -4.5306 19.5780 

𝑭̂𝒌
𝜸

(𝒁)  -1321.98 -1145.99 -976.69 -1161.90 

 

 

 

 

 

Table 9: Solution values and maximum log-likelihood using a “relaxed” version of (A). 

Var k=2 k=3 k=9 k=10 

B0 -8.7718 -4.7098 -4.3124 -4.1170 

B1 - # Priors 0.0791 0.0355 -0.0014 -0.0554 

B2 - Age 6.9274 2.4306 -2.0171 -2.7171 

B3 - Gender 0.0367 0.0311 0.0317 0.0447 

(F1) 10.0974 10.5531 19.2753 23.6664 

(F2) 9.8509 5.3681 4.8435 5.0012 

(F3) 9.7109 5.4825 6.8125 6.5560 

(F6) 47.4068 -2.4421 2.1185 -3.3132 

(F7) 15.1000 2.7605 33.6485 16.3794 

(M1) 10.4637 6.6904 6.1655 6.2126 

(M2) 9.8060 6.6111 7.4651 6.5008 

(MO3) 9.6348 3.6911 5.8234 4.3934 

(CO3) 5.0617 -4.8416 -4.5306 19.5780 

𝑭̂𝒌
𝜸

(𝑨)  -1321.98 -1145.99 -976.69 -1161.90 
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Table 10: Solution values and maximum log-likelihood using a “relaxed” version of (B). 

 

 

Table 11: t-Test results for a relaxed version of (Z) 

t-Test relaxed (Z) 

Bins 𝑘 = 2 𝑘 = 3 𝑘 = 9 𝑘 = 10 

T-stat (A) 1.0598 0.7213 0.4023 1.5259 

T-stat (B) 0.3772 1.9265 1.4367 1.9597 

 

 

Table 12: Variables for arbitrary examples 1 and 2 

 

 

 

 

 

 

 

 

  

Var k=2 k=3 k=9 k=10 

B0 -8.7718 -4.7098 -4.3124 -4.1170 

B1 - # Priors 0.0791 0.0355 -0.0014 -0.0554 

B2 - Age 6.9274 2.4306 -2.0171 -2.7171 

B3 - Gender 0.0367 0.0311 0.0317 0.0447 

(F1) 10.0974 10.5531 19.2753 23.6664 

(F2) 9.8509 5.3681 4.8435 5.0012 

(F3) 9.7109 5.4825 6.8125 6.5560 

(F6) 47.4068 -2.4421 2.1185 -3.3132 

(F7) 15.1000 2.7605 33.6485 16.3794 

(M1) 10.4637 6.6904 6.1655 6.2126 

(M2) 9.8060 6.6111 7.4651 6.5008 

(MO3) 9.6348 3.6911 5.8234 4.3934 

(CO3) 5.0617 -4.8416 -4.5306 19.5780 

𝑭̂𝒌
𝜸

(𝑩)  -1321.98 -1145.99 -976.69 -1161.90 

k=3, Y=1 

𝑷𝝈 𝒏𝑩 𝒏𝑾 𝜹 

0 < 𝑃𝜎 < 0.35 250 125 1 

0.5 ≤ 𝑃𝜎 < 0.7 0 250 2 

0.7 ≤ 𝑃𝜎 < 1 750 625 3 

k=2 , Y=1 

              𝑷𝝈 𝒏𝑩 𝒏𝑾 𝜹 

0 < 𝑃𝜎 < 0.5 250 125 1 

0.5 ≤ 𝑃𝜎 < 1 750 875 2 
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Table 13: Average probability estimates for relaxed and strict versions of (Z) 

 

 

  

 

 

 
 

 

 

Average probabilities, k=10, strict (Z)  Average probabilities, k=9, strict (Z)  Average probabilities, k=3, strict (Z) 

Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w 

0.4838 0.4789 0.4566 0.4495  0.5368 0.5336 0.4866 0.4801  0.6298 0.6249 0.3767 0.3632 

Max 0.5000    Max 0.5554    Max 0.6724   

Min 0.4004    Min 0.4444    Min 0.3132   

              

Average probabilities, k=10, relaxed (Z)  Average probabilities, k=9, relaxed (Z)  Average probabilities, k=2, strict (Z) 

Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w 

0.9145 0.9111 0.1190 0.1052  0.9313 0.9274 0.1008 0.0735  0.9369 0.9372 0.5380 0.5220 

Max 1.0000    Max 1.0000    Max 0.9918   

Min 0.0015    Min 0.0003    Min 0.5000   

              

Average probabilities, k=3, relaxed (Z)  Average probabilities, k=2, relaxed (Z)  Average probabilities, unconstrained 

Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w  Y=1, r=b Y=1, r=w Y=0, r=b Y=0, r=w 

0.9294 0.9388 0.1456 0.1273  0.9421 0.9483 0.1554 0.1399  0.9401 0.9246 0.0732 0.0386 

Max 0.9997    Max 1.0000    Max 1.0000   

Min 0.0002    Min 0.0003    Min 0.0008   

 

 k=9, relaxed (Z) unconstrained 

Mean 0.480734134 0.466505272 

Variance 0.204192059 0.217260709 

Observations 6150 6150 

Hypothesized Mean Difference 0  

df 12286  

t Stat 1.718831377  

P(T<=t) one-tail 0.042835136  

t Critical one-tail 1.644977661  

P(T<=t) two-tail 0.085670271  

t Critical two-tail 1.960157091  

Table 14: t-Test: probabilities of unconstrained vs. k=9, relaxed (Z) models (assuming unequal variances)  


