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Abstract 

Human activity recognition has become a popular research field in smart environments such as 

smart homes, classrooms, and offices. Most of the research has been focused on single resident 

environment of activity recognition. However, in real life the live environment us usually 

inhabited by more than one person. So the research on multi-resident activity recognition is vitally 

important. The aim is to recognise human motions based on data collected from different types of 

sensors. Most works have considered multi-resident activity recognition utilizing various 

classification models. We believe that the existing methods alone cannot efficiently recognise 

multi-resident actions in the complicated situations of multi-resident environments. 

In this research, we address the research question of what is optimal general machine learning 

classification model for multi-resident activity recognition. We evaluate six general classification 

models in four datasets. We found that in six classification models the linear SVM has highest 

accuracy which obtained 88.57%. Second only to linear SVM is HMM which achieved 81.88% 

in terms of accuracy. After adopting the statistical analysis test, we conclude that the model will 

influence the classifying of results. Thus, creating or training an efficient and stable classification 

method remains an open challenge requiring further study.  

Keywords: Multi-resident activity recognition, Machine learning classification model 
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Chapter 1 Introduction 

The first chapter gives the whole introduction of this thesis and consists of five 

sections. The first section mainly introduces the background of research content. The 

second section discusses the motivation for this research project. The research question 

is addressed in Section 3. The fourth section will introduce the proposed research and 

contribution. The fifth section will lay out the structure of this thesis.  
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1.1 Background  

Human activity recognition (HAR) refers to the analysis and recognition of human action types 

and patterns. Generally, relevant information is extracted from various types of data sequences in 

the physical world, expressed in an appropriate way, and then interpreted to realise the recognition 

and learning of human behavior (Tapia, Intille, & Larson, 2004). The early work on activity 

recognition mainly focused on video analysis by arranging cameras in the environment and then 

using computer vision and image processing technology to track and recognise people or objects. 

However, activity recognition based on computer vision is vulnerable to poor illumination and 

other external factors such as diversity of data and these also involve privacy and other 

shortcomings, which are not generally accepted by users. Sensor-based activity recognition has 

many advantages, such as a wide application range and being non-intrusiveness and it has become 

a hotspot problem of current research. Activity recognition has been widely used in medical, 

security and entertainment applications. Compared with the activity recognition methods based 

on video images sensor-based activity recognition has the characteristics of low cost, flexibility 

and good portability (L. Chen, Hoey, Nugent, Cook, & Yu, 2012).  

In the past decade, with the rapid development of microelectronics and computer systems, 

sensors and mobile devices have unprecedented versatility. Sensors convert physical parameters 

such as temperature, blood pressure and humidity into electrical signals which can be measured 

by electronic devices and be output as sensor events (L. Chen et al., 2012). In recent years, sensor 

prices have fallen rapidly, and wireless technology has been widely used in mobile devices in the 

real world. The high computing power small size and low cost make sensors ubiquitous. Pervasive 

computing is also a key step in the process of extracting useful information from data obtained 

from sensors. The recognition and understanding of human activity based on sensor data will be 

critical to human-centered computing in the future (Caldeira, Rodrigues, & Lorenz, 2012). 

Behaviour perception technology is an important branch of perceptual computing. It focuses on 

user behaviour perception and recognition, and it plays an important role in intelligent and 

personalised services. We can provide more humanised services through the study of perceptual 

activity recognition, such as geriatric care (O. Kwon, Shim, & Lim, 2012), somatosensory games, 

and health care (Korhonen, Parkka, & Van Gils, 2003). Sensor-based human perceptual activity 

recognition is a new branch of behaviour recognition. Compared with image-based activity 
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recognition, sensor-based is more convenient, freer and more secure. It has low dependence on 

the external environment, can be freely worn, and does not violate user privacy (A. J. Sarkar & 

Khan, 2011). An increasing number of scholars and research institutes have participated in the 

construction of sensor-based activity recognition systems. One of the main research directions is 

to identify human activity by using different types of sensors. At present, there are two main types 

of sensor development: the first is based on wearable sensors, such as smartphones or wristbands 

with three-dimensional accelerometers. The second is the non-intrusive sensors or environmental 

sensors in the intelligent environment. These sensors do not need to be fixed on the individual, 

but are installed in the surrounding environment of the individual. For example, passive infrared 

sensors, temperature and humidity sensors or pressure sensors (D. J. Cook & Krishnan, 2015).  

So far, in the process of HAR research, we have paid special attention to the problems of the 

elderly living alone; that is, monitoring the lives of individual elderly people in smart homes. 

According to the NHS (National Health Service [in the UK]) report, the potential for using sensor 

data and activity learning for health surveillance and intervention of the aging population is 

endless. It is estimated that, by 2050, the number of elderly people over 85 will be three times 

that of today, and 50% of adults will need help in their daily activities by that time (Bouchachia, 

2015). At present, there are more and more studies on monitoring individual residents (Nait Aicha, 

Englebienne, & Kröse, 2013; A. Sarkar, Lee, & Lee, 2010; van Kasteren, Englebienne, & Kröse, 

2011a, 2011b). Because more and more people live longer but often suffer from chronic diseases, 

more caregivers are needed. Under the condition of a smart home, there will be two or more 

people in most cases, so we can not only focus on the daily activities of just a single resident. The 

HAR system should be extended to the case of multiple residents. 

So far, the research on multi-resident recognition is not as popular as single-resident 

recognition because it is still relatively new and has many possible research directions. There are 

still many outstanding challenges in single-resident activity recognition, such as the recognition 

of complex activities and interleaving activities. Recent papers have highlighted the challenges in 

this area, as shown in (Bouchachia, 2015) and (Ni, García Hernando, & de la Cruz, 2015). In a 

recent study, Amiribesheli et al. (Bouchachia, 2015) discussed challenges related to data 

processing (i.e., maintaining the security, privacy and reliability of active data) and activity 

recognition modeling such as: identifying cross and concurrent activities, unbalanced data, online 

activity learning applications, the flexibility and adaptability of the activity model and the 
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scalability of the activity model. 

1.2 Motivation/ Rationale 

HAR is an approach to recognising human movement using data collected from different types of 

sensor (Sikder & Sarkar, 2017) . To some extent, activity recognising can prevent the occurrence 

of potentially unsafe activities effectively. For the elderly living alone, it is necessary to issue 

timely warnings in case of sudden falls and dangerous activities (Garcia-Ceja, Galván-Tejada, & 

Brena, 2018b). There are some practical HAR applications such as environmental assisted living 

system, home monitoring and so on.  

It is estimated that by 2020, the number of adults aged 60 and over will reach 1 billion, and 

by 2050, it may reach 2 billion. Currently, around the world, one tenth of the elderly live alone 

(Eunju Kim, 2010). With the development of science and technology, the intelligent environment 

has become mature. The increasing number of the elderly makes activity recognition a hot 

research field. Meanwhile, the continuous development of sensor and communication technology 

ensures the smooth realisation of smart home. Different types of sensor devices installed in 

intelligent environments can be used to identify the activities of elderly people and then send 

behavioral information to their family members or caregivers in some way so that they can better 

care for them. At present, many solutions have been proposed for single resident activity 

recognition (de la Concepción, Morillo, García, & González-Abril, 2017; Kashimoto et al., 2017a; 

Triboan, Chen, Chen, & Wang, 2017). However, it should be point out that in the real world, the 

living environment often complex, not only one person. Sometimes including their guests or 

family members. So it will produce more complex activities. Therefore, multi-resident activity 

recognition ability is significant.  

Multi-resident is still in its infancy in the smart home environment. Before researching the 

problem of multiple residents many problems of single resident have not been solved (Álvarez de 

la Concepción, Soria Morillo, Álvarez García, & González-Abril, 2017; Galván-Tejada et al., 

2016; Kashimoto et al., 2017a). In recent years, more and more researchers have focused on the 

field of multi-residents as a study in the smart home environment and multi-resident complex 

activity recognition. There are different recognition techniques for the multi-resident activity 

recognition based on sensor deployment strategies. From a macroscopic aspect, sensors can be 
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divided into two types. The first method is applying the sensors in the smart environment, usually 

by attaching to an object thus making them mostly stationary. In the second scenario, human take 

along the sensors and, in normal conditions, these are typically a smartphone and other wearable 

devices such as wristband and smartwatch, which is portable. From microscopic aspect, there are 

five varieties of the sensor that are applied to discern human activities and anomaly detection in 

the smart environment: vision-based sensing, wearable sensing, smartphones sensing, acoustic 

sensing and ambient sensing (Hande Alemdar，Cem Ersoy, 2017). 

People may be more receptive to wearable sensors than to cameras. Compared to vision-

based motion recognition systems, wearable sensor-based systems have no data association 

problems and require fewer data points to process. However, people usually need to change their 

clothes every day; this is likely to make them forget to wear the sensor again. Even if the power 

management module is optimally designed, the battery inside the sensor must be periodically 

charged or replaced, which is inconvenient for the user. Therefore, when the vision-based system 

is not suitable for deployment and the wearable sensor is not convenient to use, how to use simple 

sensors to realise daily activity recognition has excellent research significance. 

Most of the existing state-of-the-art research is aimed at the living space of a single resident. 

Nevertheless, from the actual situation, the living space usually has more than one resident. 

Therefore, it is a great significance to design and research the multi-resident problem. In fact, 

there are more and more researches focus on the problem of multi-resident complex activity 

recognition in the future. However, there are many outstanding and complex problems which 

make the research slow.  
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1.3 Problem/ Research Question 

Through the above introduction of human activity recognition, we have made it clear that the 

research focus of this thesis is to classify daily activities. Some preliminary analyses before we 

start the research can help us to understand the framework and process of HAR. Therefore, the 

research question in this thesis is:  

 Which is the optimal general machine learning classification model and what parameters 

are to be used for multi-resident activity recognition? 

Before we begin the study of major issues, we also need to solve some sub questions: 

Which classification methods could be used for multi-resident activity recognition? 

How the general classification methods for multi-resident in activity recognition be evaluated? 

Since our main research content is multi-resident activity recognition, we need to evaluate 

the general classification methods used in our research process and chose the optimal method to 

achieve the classification.  

 

1.4 Proposed Research and Contribution  

The nature of human activities is usually far more complex in a multi-resident environment 

compared with a single resident environment. The proposed aim of this research is to extend the 

existing research on single resident activity recognition to multi-resident situations. The main 

argument in this thesis is around developing a general classification method for multi-resident 

activity recognition. Based on the existing research of activity recognition, we chose six machine 

learning models which are Naïve Bayes, Bayes Network, Support Vector Machine, Decision Tree, 

Random Forest and Hidden Markov Model to deal with the problems of activity recognition 

classification. The specifics of these methods used in our experiments will be explained in Chapter 

4. We provide the theoretical basis for the entire research in Chapter 3. This thesis also introduced 

the specific method and process of activity recognition. In Chapter 2, we compare details different 

methods in existing research.  

The overall contribution to our research is through comparing the different classification 

models then finding which are optimal to multi-resident activity recognition. For multi-resident 

activity recognition, our research work is based on machine learning, and our research result can 
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meet the developmental needs of multi-resident activity recognition. Our study further 

investigates multi-resident HAR. The aim is to accurately recognise some complex activities 

using non-intrusive sensors.  

1.5 Thesis structure  

This thesis is composed of five chapters. Chapter 2 gives an overview of activity recognition 

literature. Specifically, Section 2.2 discusses the types of activity recognition and general structure 

of activity recognition. Section 2.3 presents some different classification methods for multi-

resident activity recognition. Section 2.4 presents some samples of publicly available datasets and 

evaluation methods. Section 2.5 mainly introduces the research challenge and open issues of 

activity recognition and Section 2.6 summaries of this chapter. 

Chapter 3 presents our methodology for multi-resident activity recognition. Section 3.2 

introduces the data collection and data information. In Section 3.3 we present the process of data 

pre-processing. Section 3.4 describes the machine learning classification method that we used. 

Section 3.5 presents the evaluation methods for the experimental results. We selected four 

evaluation criteria which are accuracy, F-measure, precision and recall. Section 3.6 introduce the 

statistical test which include T-test and ANOVA to confirm the experiment result. Section 3.7 is 

the summary. Section 4.5 provide the statistical analysis to the results.  

Chapter 4 presents the experimental results and introduces the specific model and 

implementations of each activity recognition datasets. Section 4.3 discusses the comparison of 

bagging and boosting results. Section 4.4 discusses the experiments results.  

Finally, Chapter 5 concludes the thesis. Specifically, we draw our conclusions and limitations 

in Sections 5.1 and 5.2. The propose future works will be discussed in Section 5.3. 
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Chapter 2 Related Work  

Through the in-depth analysis of past research issues and theoretical reviews, in this 

thesis we mainly evaluate the general classification models for multi-resident in activity 

recognition. Through using the research of existing literature, we can provide a better 

idea of the current status of multi-resident activity recognition and classification. This 

chapter will introduce a variety of classification methods and technical application. First 

of all, we discuss the overview of human activity recognition. Then we summarise the 

reviewed papers in recent years to highlight the trends of the area. Thirdly, we will 

describe different types of activity recognition. Finally, we will expound on the general 

structure of activity recognition.  
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2.1 Introduction 

Nowadays, smart homes are designed to help and facilitate residents’ lives by providing context-

aware services. In order to provide these services, it is necessary to understand the activities of 

the residents, as many services are based on these activities. Therefore, activity recognition plays 

an important role in many applications in smart homes. HAR has developed matured to play a 

vitally important role in artificial intelligence. In some ambient intelligent environments like 

homes, offices and even classroom, there has been much research during last decade. So HAR is 

a popular research field especially in smart home. In the meantime, the development of sensor 

and communication technology is more significant in this field. The HAR usually uses two 

approaches for collecting information; these are external and wearable sensors. Some wearable 

sensor like wristband and smartwatch, the subjects need to wear the devices every day. There is a 

large variety of research based on this. Larbrador and Lara proposed a survey on HAR using 

wearable sensors. There are five varieties of the sensor are applied to discern human activities and 

anomaly detection in the smart environment: vision-based sensing, wearable sensing, 

smartphones sensing, acoustic sensing and ambient sensing (Hande Alemdar，Cem Ersoy, 2017). 

Other external sensors are usually used for collecting states of the objects and environment, to 

monitor activities of the residents (Bouchachia, 2015). Generally, for wearable sensor-based 

systems there is no data association problem and these require fewer data processes. However, 

based on some privacy issues, most people are not comfortable with the wearable devices. The 

battery inside the sensor may breakdown and cause inconvenience. So how to use simple sensors 

to realise daily activity recognition has excellent research significance.  

With the growth of aging population, how to build a safe and intelligent living environment 

will be particularly important for the elderly who live alone. Based on this issue, many research 

proposed some real-time ambient assisted living solutions. In order to improve the quality life of 

the elderly living alone in the smart environment, Nirmalya et al. construct a complete deployment 

solution for service providers and developers from the main concepts, equipment, technology and 

models (N. R. A. M. D. Cook, 2016). Qin Ni et al. targeted to independent living life proposed 

some main activities classification and data processing methods (Qin Ni, 2015). However, even 

if most elderly people live alone they may have pets or some guests. It’s very necessary to develop 

solutions for multi-residents.  



11 

2.2 Overview of Activity recognition 

Activity recognition is the process of identifying the specific human movement or action based 

on different types of sensors. Activity recognition mainly focuses on video surveillance, patient 

monitoring systems, human computer interaction and similar devices. With the development of 

the smart environment, HAR has become a continuous research problem. At present, the smart 

environment is gradually changing people's way of life. Especially for some infants and the 

elderly who need to be taken care of, the existence of smart environment greatly improves the 

possibilities for independent life. At the same time, the activities in the smart environment are 

changeable, complex and interactive. Therefore, there are higher requirements for the actual 

deployment of sensors and the driving technology of monitoring. The development of HAR has 

made great progress in monitoring of people’s health. Now it is attracting more and more 

researchers' attention. HAR can not only detect people's daily movements, but is also used for the 

clinical management of the elderly in medical institutions (HaiderJanjua，RimHelaoui, 2016).  

Many works have been done on the single resident recognition situation. Fox example, Yale 

Song et al. proposed a solution for the single sequential activity (Jeremie Saives, 2015). Nirmalya 

et al. proposed a classification of main activities for the independent living elderly (N. R. A. M. 

D. Cook, 2016). There are also efforts to solve the problem on interleaving activity recognition

as described by (T. S. Daniele Riboni, Gabriele Civitarese, Heiner Stuckenschmidt, 2016; Hadi 

Tabatabaee Malazi, 2018). However, in the real-world situation, human activities are more 

complicated and sometimes involve more than one person in the home such as collaborative 

activities by two people. Thus, more attention has been paid to multi-resident activity recognition 

by the researchers in recent years. From 2010 to 2018, the contribution of single resident activity 

recognition is presents an upward trend. However, multi-resident activity recognition is still 

relatively limited compared with single resident activity recognition. With the development of 

smart home and sensor technology, multi-resident activity recognition even for some complex 

activity recognition will be significantly developed in the future(Jing Zhao, 2017). There are 

different recognition techniques for this area based on sensor deployment strategies. Generally, 

there are two major classes approaches based on sensor deployment and selection: wearable 

devices and infrastructure sensor which can direct installed into environment component. 

Wearable devices are body-worn sensors. Specifically, there are five types of sensors used to 
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discern human activities and anomaly detection in the smart environment: vision-based sensing, 

wearable sensing, smartphones sensing, acoustic sensing and ambient sensing (Hande Alemdar，

Cem Ersoy, 2017). The solution based on video surveillance usually installs the camera to capture 

the human body movement data within a specific area and relies on the image analysis technology 

to recognise the movement (Uddin, 2017). It is usually used in security surveillance. The elderly 

who are living independently need these devices to guard against accident. However, this 

technique has the following disadvantages: (1) Equipment such as cameras, video storage and 

analysis equipment are expensive, for most users are not affordable; (Asma Benmansour, 

Bouchachia, & Feham) They undermine user privacy, constant monitoring of video has 

dramatically intruded on personal privacy (Yin, Fang, Mokhtari, & Zhang, 2016a). Thus, we will 

not consider video-based sensors in this survey. On the other hand, wearable-based sensors for 

activity recognition has the characteristics of low equipment cost and low privacy intrusiveness, 

which effectively makes up for the lack of video surveillance. However, wearable sensors-based 

technology also has its limitations. Some people, especially the elderly are reluctant to wear the 

devices, or sometimes they forget to wear them. Therefore, we believe that interaction-based 

sensors such as PIR sensor, temperature sensors, and humidity sensors are used for helping 

activity recognition will become a trend in the future (Kashimoto et al., 2017b). 

Fig.2.1 Classification of human activity recognition based on sensors (Hande Alemdar，

Cem Ersoy, 2017) 

In recent years, researchers have made extraordinary progress in the field of daily motion 

recognition. In general, traditional human body daily motion recognition is based on processing 

visual information. The typical method based on visual recognition has two main steps, feature 

extraction and pattern recognition. However, to avoid complex image processing, some 
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researchers use other wearable or binary sensors instead of visual sensors. Wilson et al. (Damla 

Arifoglu, 2017) proposed the problem of simultaneous target tracking and motion recognition. 

They used four binary sensors, including motion detectors, photo-interrupt sensors, pressure pads, 

and contact switches; dynamic Bayesian networks are used to model position tracking and motion 

recognition indoors, using RaoBlackwellised particle filters (RBPF) to solve data association 

problems. Zhu et al. (U. A. B. U. A. Bakar, 2015) used motion data and position information to 

infer human motion. In their study, an inertial sensor was attached to the torso of the human body 

to provide motion data, and another optical motion capture system provided position information. 

They use neural networks and hidden Markov models to identify coarse-grained and fine-grained 

motions, and further use Bayes' theorem to fuse motion and position information. 

2.2.1 Types of activity recognition  

Most of the researches have studied the recognition of activity for single resident. A single activity 

usually has only one action. For example, make a phone call. Nevertheless, even with a single 

person in the house, the activity is more complex because the activity is composed of many sub-

activities. For example, washing hands then cooking is a sequential activity. It means each action 

is performed after another action in a sequence without any interweaving. 

 

 

     Fig.2.2 Sequential activities (single resident)    

Besides sequential activity, there are two other activities, which are interleaving activity and 

concurrent activity. Interleaving activities refers to a single person shifting activity among some 

other activities. For example, a resident is cooking food and boiling water in the kitchen; these 

two activities should execute one by one. The next activity type is concurrent activity. It refers to 

more than one activity performed by a single resident simultaneously (e.g., watching TV and 
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drinking tea). Concurrent activities are events that occur at the same time, so they share the time 

intervals. It means that one user performs two different activities simultaneously or multiple users 

perform one activity at the same time. For example watching TV and drinking tea.  

Fig.2.3 Interleaving activities (single resident) 

In the real world, the living environment often has more than one person, and human activities 

are also more intricate (Alaa, Vaidehi, Doreen, hnstedt, & Ralf, 2016). Thus, multi-resident 

activity recognition is still more challenging, particularly in multi-resident complex activities 

between two or more people. The problems mainly focus on two kinds of activity, which are 

parallel activity and collaborative activity (Asma Benmansour et al., 2017). Naturally, with 

increasing number of residents in the living space, the complexity of activity recognition increases 

as well. Parallel activity refers to many activities performed by different people in the living space 

at the same time. For example, one person is making tea in the kitchen, and the other resident is 

making a phone call in the living room. Collaborative activity is another type of activity 

recognition in multi-resident. It refers to more than one person join efforts together in a synergistic 

manner so that each resident performs one same activity together (e.g., two people moving a 

dining-table together), or they work separately but for one objective (Asma Benmansour et al., 

2017) (e.g., two people preparing dinner together in the kitchen). 

Fig.2.4 Collaborative activities (two residents) 

These kinds of activity mentioned above are the main activities in our daily life. Many studies 
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have addressed some problems such as sequential activity (Malazi & Davari, 2017) and 

interleaving activity (Daniele, Timo, Gabriele, & Heiner, 2016), but it is seldom studied involve 

parallel activity and collaborative activity, especially complex activities in the multi-resident 

situation. It is essential to understand the classification of sensor and activity because when we 

want to identify the activity, the first thing is the chosen sensor, and what types of activity will be 

recognised. After the sensor is selected, we can start recognising activity. 

2.2.2 General structure of activity recognition 

There are four steps for the activity recognition system to identify the activities. The first step is 

raw-data acquisition and then using different types of sensors to process data and obtain contextual 

information. The second step is the collected data will be processed in different manners to identify 

activities based on the requirement of research. For example, remove the noise from data and data 

segmentation. In general, different types of sensor collection activities need to be used 

simultaneously and correctly identified, and each sensor can collect raw data in a different format. 

Therefore, in order to obtain useful information that can be applied to the experiment, we must 

preprocess the data because the original data itself cannot be used in the activity detection 

algorithm. The third step is feature extraction, and different data features are extracted from 

processed data. The last part is the classification. There are various segmentation techniques and 

classification models can be applied to analyse the data of activity recognition (Lara & Labrador, 

2013). 

In the next section, we will discuss some classification methods used in activity recognition. 

2.3 Different classification models for multi-resident activity 

recognition 

In this section, we will describe different technologies can be used to classify multi-resident 

activity.  

2.3.1 Naïve Bayes classifier (NBC) 

Naïve Bayesian classifier (NBC) is the most commonly used and also the simplest probabilistic 
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models in the field of activity recognition (Yin et al., 2016a). It depends on the Bayesian theory to 

establish decision boundaries using all assumptions that input the features independently. These 

assumptions make the classification easy to handle. The observations and labels in joint probability 

can be decomposed into 

𝑝(𝑋, 𝑌) = ∏ 𝑝(𝑥𝑡|𝑦𝑡)

𝑇

𝑡=1

𝑝(𝑦𝑡)

In this formula, where p(yt) is an activity-based prior probability. We assume that all the

input data are independent, and then we can directly calculate the conditional probability of the 

labeled data(X, Y)  (Yin et al., 2016a). Thus, the formula can be described as follows: In our 

settings, the set X = {X1. X2 ⋯ Xn}  expressed as the sensors data and  Y  represents different

activities as shown in Fig.2.5. 

Fig.2.5 The structure of NBC (ASMA BENMANSOUR, 2016) 

The Naïve Bayes Classifier has been applied in many multi-resident research studies. The 

authors (Yin et al., 2016a) used environmental sensors, including temperature sensors, humidity 

sensors and accelerometers, to track the locations of multiple residents and identify their daily 

movements at different locations in the room. Then NBC was used for classification and 

recognition to get accuracy which is 73%. However, NBC is not suitable for modeling time-

specific processes due to its own defects. Similarly, Tapia et al. (Emmanuel Munguia Tapia, 2004) 

used NBC to recognise daily activities. The experimental dataset consists of 77 binary sensors 

installed on house doors, cabinets, tables and other target objects. Activities include daily 

activities such as bathing, sleeping and cooking. They got 89% accuracy when they set up NBC 

differently. NBC, on the other hand, can also be used to process video data. Messing et al.(Ross 

Messing, 2009) evaluated NBC from video data, and they followed "phone use", "drinking water" 

and "snacking". The results showed that NBC had good performance with an accuracy rate of 

89%. 
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2.3.2 Bayes Network 

Bayes Network is also known as Probabilistic Network or Belief Network. Bayesian network is 

associates different variables with adjacent temporal steps. This is often called a Bayesian 

network of "two-time slices," because at any point in time Bayes network the value of a variable 

can be calculated from the internal regressions and the direct a-priori (time T-1)c. DBNs are 

commonly used in robotics and have proved to have great potential in a large number of data 

mining applications. For example, BNs have been used in speech recognition, digital forensics, 

protein sequencing and bioinformatics. BN has also proven to produce Kalman Filters and Hidden 

Markov Models equivalent solutions (Alam, Roy, Misra, & Taylor, 2016). Fig.2.6 shows the 

structure of Bayesian network. 

Fig.2.6 The structure of Bayes Network (ASMA BENMANSOUR, 2016) 

The first proposed use of discrete Bayesian filters is Wilson and Atkeson (Wilson & Atkeson, 

2005). In experiments, they perform both activity recognition and recognition. The problem of 

multiple user data association is solved by using Rao Blackwellized particle filter. Finally, they 

only summarized the results of the experiment rather than the real-world data. The results of 

simulation data show that the accuracy of two people is 98%, and that of three people is 85%. 

Alam et al. (Alam et al., 2016) proposed a general dynamic Bayesian model for single 

resident, which was extended to a coupled HDBN model and applied to multi-resident 

recognition cases. The experiment used PIR sensors and mobile phones to collect activity 

information. It is includes macro activities such as washing dishes, preparing meals and 

using computers. There are also some postural activities. To evaluate the accuracy of the 

test model, they used CASAS dataset and CACE (real world dataset). Experimental 

results show that the recognition rate of HDBN is 95% in multi-resident environment. 

The average accuracy was 20% higher than HMM, 8% higher than CRF, and 5% higher 

than CHMM. 
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2.3.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a state-of-art classification approach which has been widely 

used in various applications such as face recognition and stock classification. According to Fig.2.7, 

we can see that classes are divided by hyperplanes. The margin is the distance from the hyperplane 

to the nearest data points, which is called support vector. Support vector machines determine the 

optimal hyperplane by using different optimisation techniques to maximise the margin. SVM has 

some different kernel functions (e.g., radial basis kernel, polynomial kernel, etc.) Using kernel 

function to map the nonlinear separable data from the input space into a higher space where data 

can become linearly separable. 

Fig.2.7 The hyperplane, margin and support vectors (Bouchachia, 2015) 

In recent years, support vector machines (SVM) have been applied in the field of activity 

recognition. Fleury et al.(Anthony Fleury, 2010) describe the application of SVM. Experimental 

data were collected through a set of binary (such as PIR, flood detector) and non-binary (such as 

microphone, wearable motion sensor) sensors. In the whole experiment, a SVM-based system was 

used to identify 7 activities. The method of cross validation is used to obtain the satisfactory 

classification rate, the accuracy of polynomial kernel is 75%, and the accuracy of gaussian kernel 

is 86%. 

Cook et al. (Diane Cook, 2013) used SVM, Naïve Bayesian classifier and Hidden Markov 

Model for activity discovery and recognition. The data were collected from three elderly people 
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living in SHs it included five daily activities and installed PIR and CSS on doors. The results show 

that SVM is superior to the other classifier, with an average accuracy of 91.52 % for the three 

families. In addition, an activity discovery model was introduced to detect new activities and 

enhance activity recognition. SVM can improve the accuracy by 10% when using activity 

recognition. 

In Luštrek and Kaluža (Mitja Luštrek, 2008), SVM was used in other algorithms (C4.5 DT, 

NBC, K-nearest Neighbor, and Random Forest) for fall detection. The data was collected using 

radio-tag equipment installed at key joints in the three men’s bodies. The evaluation of the 

algorithms showed that SVM is better than other classifiers performance which accuracy is 97.7 %. 

2.3.4 Decision Tree  

Decision Tree (DT) is typically generated top-down. In each tree, event (event in this thesis means 

decision) can lead to two or more events, which leads to different outcomes. Then this decision 

branch is drawn into a graph much like a tree's branches, hence we call it Decision Tree. It is a 

common classification model, which is also a type of supervised learning. A Decision Tree is also 

utilized for regression when the output data is continuous. As can be seen, it consists of some nodes 

that represent branches and features and describe the values of the features. Each leaf node 

represents a class label (Amiribesheli, Benmansour, & Bouchachia, 2015). 

Other algorithms such as C4.5 and CART perform two phases, namely tree growing and 

pruning, while others grow the tree (Lior Rokach, 2005). Based on the wearable triaxial 

acceleration dataset, Ravi et al.(Nishkam Ravi, 2010) adopted C4.5 for recognising activities. 

Activities include going up and down stairs, standing up and sitting down. Experimental results 

show that C4.5 can achieve an accuracy rate of 97.29% after repeated training for the same dataset. 

Achieved 98.53% accuracy in many user data sets; only 77.95% accuracy was achieved for data 

not from the same day. 

According to Prossegger and Bouchachia (Markus Prossegger, 2014), used Decision Tree to 

recognise the common daily activities in a multi-resident environment. They proposed a new 

algorithm which named E-ID5R is an extension of ID5R. In this new algorithm they added leaf 

nodes and then achieved multi-gagged. The E-ID5R algorithm gradually adopts to new 

collaborative activities and new instances, so they selected ARAS dataset to evaluate it. 
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Experimental results show that the algorithm achieves a good classification performance in House 

B which obtained 82%. 

2.3.5 Random Forest  

Random forest is a non-probabilistic decision tree based on statistical learning theory. It combines 

a Bootstrap sampling method and a decision tree algorithm to build a tree classifier set containing 

multiple basic classifiers. For each tree, only the available sub-sets of the datasets are considered 

(Nef et al., 2015). New data is categorised, entered into each tree, and classified and predicted 

using a voting strategy. In addition, for each node only have a random subset of all features is used 

for splitting. Because this algorithm solves the problem of over-fitting well to some extent, its 

classification performance is better than that of single classifier. 

 Tobias et al. (Nef et al., 2015) collected ADL (Activity Daily Life) data by installing passive 

infrared sensors (PIR) to monitor the daily activities of elderly people. They propose a new 

technology that uses data collected from existing smart homes for training and then applies it to 

other smart home activity recognition systems. They asked users to tag all instances of ADL and 

then applied different data mining techniques to analyse sensor data. To improve the accuracy of 

activity recognition, they used three different supervised classification algorithms and compared 

the row energies, including Naïve Bayes, Support Vector Machine and Random Forest. According 

to the experimental results, the average specificity of RF was 96% and the accuracy was 74% better 

than NB and SVM classifier. Through the training, mining and clustering of the new framework, 

the results of RF classifier have been significantly improved. 

 Lu Xu et al. (Xu, Yang, Cao, & Li, 2017) proposed a new activity recognition method based 

on random forest. Throughout the study, they used a single wearable device to collect physiological 

parameters of different parts of the human body as it moved. After a series of processing and 

analysis it is used to estimate the human movement. According to the activity recognition model 

and algorithm based on random forest proposed by the authors, they verified the effectiveness of 

model by experiments, and accuracy reached 90% in recognising walking, walking upstairs and 

static recognition. The experimental results are compared between decision tree and ANN. Based 

on this study, we know that random forest can not only calculate the similarity between examples, 

but can also realise unsupervised cluster analysis and anomaly monitoring. 
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 In the study conducted by Ramon et al., they evaluated the clubbing-based activity approach 

and improved the automatic selection group number and instance redistribution process (Garcia-

Ceja & Brena, 2018). In their experiment, four public activity recognition datasets were applied to 

seven different classification models, the performance of this model was proved by 10-fold cross-

validation. It included Random Forest, SVM, DT and other models. Experimental results show 

that all statistical signals except the Random Forest model cannot be significantly improved. By 

comparison with other models, the accuracy of Random Forest in all four datasets is higher than 

for other models after the improvement of existing activity methods which are 86%, 89% and 75%, 

respectively. 

2.3.6 Hidden Markov Model (HMM) 

Hidden Markov Model (HMM) is a probabilistic model based on time series. It describes the 

process of generating unobservable random sequences from a hidden Markov chain and then 

generating observation of random sequences from various states (Amiribesheli et al., 2015). From 

given the input sequence (x1,x2, ⋯ xT), hidden state sequence (y1,y2, ⋯ yT) can be estimated as 

illustrated in Fig.2.8. 

 

Fig.2.8 The structure of HMM  

HMM is one of the most popular probabilistic model deployed to human activity recognition 

(Bouchachia, 2015). The activities in the ovals from phone call to clean are defined as hidden 

states as shown in Fig.2.9, while other serial number in the rectangles means observation sequence 

and the data collected from the sensors. The horizontal arrow represents the probability of 

transition, and the downward arrow represents the probability of emission for the corresponding 

observed state. 
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     Fig.2.9 Activity modelling using HMM (Bouchachia, 2015) 

Research on multi-resident activity recognition has been developing recently due to the 

increasing demand for health monitoring in ambient intelligent environments. The task can be 

done by employing sequence models to perform prediction on the activity events over time. The 

Hidden Markov Models (Markus Prossegger, 2014) is a popular statistical model for sequential 

data. It is characterised by the dependency of an observation variable on a hidden variable at each 

time step, and the dependency of the hidden variable itself on its previous state. HMMs can be 

easily employed for activity recognition. In particular, one can define the observation as the 

sensors state, i.e. video frame, wearable or/and ambient sensors’ values, and the hidden variable 

as the activity (Eunju Kim, 2010). In multi-resident smart homes, HMMs have been studied 

intensively, as shown in previous works (D. J. Cook, 2010; Hande Alemdar, 2013) (R. Chen & 

Tong, 2014; Singla, Cook, & Schmitter-Edgecombe, 2010). A straightforward approach is to use 

a single HMM for combined activities, i.e. Treating the activities of all residents as a random 

variable. For example, the activities can be combined as joint labels so that they can be represented 

by a single hidden variable.  

2.4 Evaluation Method and Dataset 

In this section, we will consider other important issues related to activity recognition. Firstly, we 

will describe the datasets for activity recognition in recent years. Then evaluation techniques will 

be mentioned, and some contributions of multi-resident activity recognition recently will be 

provided. 



23 

 

2.4.1 Datasets for multi-resident activity recognition  

Datasets are important for activity recognition for evaluating the performance of research. There 

are lots of datasets can be used in activity recognition such as PUCK, mHealth, UCI and other real-

life datasets (Al-Nawashi, Al-Hazaimeh, & Saraee, 2017). However, in the multi-resident scenario, 

most of the researchers choose CASAS or ARAS datasets for evaluation. 

Center for Advanced Studies in Adaptive Systems (CASAS) was established at Washington 

State University in 2007. Up to now, are more than 20 datasets have been collected by CASAS and 

some of them are related to multi-resident datasets (Ifat Afrin Emi & John A. Stankovic, 2015). 

For example, one dataset named “Multi-resident ADL Activities” represents two people in the 

apartment at the same time performing fifteen ADL activities in the apartment. The activities 

include sequential activity, interleaving activity, parallel activity and collaborate activity. The 

details of activities are shown in Table 2.1. 

Person A Person B 

Fill medication dispenser Hang up clothes 

Water plants Move the couch and coffee table 

Help move the couch and coffee table read a magazine 

Play a game of checkers Sweep the kitchen floor 

Set out ingredients for dinner Play a game of checkers 

Read a magazine Set dining room table for dinner 

Gather food for a picnic paying an electric bill 

Pack food in the picnic basket Retrieve dishes 

 Pack supplies in the picnic basket 

Table 2.1 Multi-resident ADL Activities Dataset (Asma Benmansour et al., 2017) 

In addition to this, there are seven types of sensors were applied to this scenario, which are 

motion sensors, item sensors, cabinet sensor, water sensor, burner sensor, phone sensor and 

temperature sensors (A. Benmansour, Bouchachia, & Feham, 2015). Fig.2.10 depicts the specific 

deployment of sensors in this room. 
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Fig.2.10 Sensor deployment in Multi-resident ADL dataset (Hadi Tabatabaee Malazi, 

2018) 

ARAS is one of the most used datasets used in the multi-resident activity recognition 

scenario. This dataset can be divided into two separate datasets, House A and House B. This 

dataset is the only one dataset for multi-resident using interaction-based sensors. In this dataset, 

all the same activities were performed in House A and House B but different sensors were used. 

A total of twenty-seven activities were performed (A. Benmansour et al., 2015). An important 

feature of ARAS dataset is that it contains a large number of human activities and characteristics. 

Table 2.2 and Table 2.3 summary the activities and sensors in House A and House B. 
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Table 2.2 HouseA details in ARAS (Alemdar & Ersoy, 2017) 



26 

 

 

Table 2.3 HouseB details in ARAS (Ifat Afrin Emi & John A Stankovic, 2015) 

In a general study, scholars often use more than one dataset to evaluate the performance. For 

example, Ifat et al. (Ifat Afrin Emi & John A. Stankovic, 2015) used not only ARAS dataset but 

also CASAS to evaluate their SARRIMA system. Alam et al. (Alam et al., 2016) even collected a 

real-world dataset named CACE to evaluate their method and also used CASAS for comparison. 

CASAS and ARAS have become benchmarking datasets for multi-resident activity recognition. 

With these datasets, we can well evaluate the proposed method. 
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2.4.2 Evaluation metrics 

There are many approaches to evaluate proposed models, and the evaluation approach should 

illustrate the methods of using data, training data and testing data. Generally speaking, most of the 

researchers use different kinds of cross-validation to measure the performance of recognition (Lara 

& Labrador, 2013). The recognition result is used in the confusion matrix Mn×n for the n-type

classification problem. In the binary classification problem, the values can be acquired from the 

confusion matrix included True Positives, True Negatives, False Positives and False Negatives. All 

of them is the number of positive samples or negative samples to be positive or negative. We can 

extend these metrics to n classes even though it is binary classification. In some situations, on the 

basis of the particular class, the instance can be positive or negative (Rodomagoulakis et al., 2017). 

For example, positives could be all instances of walking while negatives could be all instances 

other than walking. In the activity recognition, classes represent activities. They used accuracy and 

false positive rate to calculate each of the two indicators for each type of feature, and then chose 

the best results to report. And assessed the effect of the feature on the efficiency of resident 

recognition. For instance, in a two-person household, one person would take much more time at 

home than the other one, so the probability of an individual event would be attributed to the person 

responsible for most of event, leading to a higher false positive rate.  

In general, accuracy is a typical indicator for classification. By calculating accuracy, we can 

assess the balance problem. It is the most common evaluation to conclude the entire classification 

performance. Another valid choice of evaluation metric is precision. It is a measure of accuracy. 

The third one is recall. It is a measure of coverage and it measure the ratio of positive samples are 

classified as positive to the total number of positive instances. The last one is F-measure which 

almost used to many classification projects. 

When comparing Naïve Bayes and HMM, Yin et al. use accuracy and F-measure to evaluate 

the performance of model (Yin, Fang, Mokhtari, & Zhang, 2016b). Yaqing and Yong et al. (Liu, 

Ouyang, Liu, & Chen, 2017) use accuracy, precision and recall to evaluate the effectiveness of the 

resident recognition problem. Some of research use all of them to evaluate the experiment result 

such as (Fahad, Tahir, & Rajarajan, 2014), (M.-C. Kwon & Choi, 2018), (Fahad, Tahir, & Rajarajan, 

2015).  

The summary of selected research in Table 2.4. 
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Ref. Model Dataset Result 

Accuracy F-Measure Precision Recall 

[Yin et 

al.,2016] 

Naïve Bayes 

and HMM  

Real-

world 

dataset 

-Naïve Bayes:

73.01% 

-HMM:

73.10% 

Tapia et al. 

[2004] 

Naïve Bayes ARAS 

dataset 

89% 88% 

Messing et 

al. [2009] 

Naïve Bayes KTH 

dataset 

89% 

[Alam et 

al.,2016] 

Bayes 

Network 

CASAS 

and CACE 

dataset 

95% 

[Anthony 

Fleury,2010] 

SVM 

(Polynomial, 

Gaussian) 

Real-

world 

dataset 

-Polynomial:

75.9% 

-Gaussian:

86.2% 

Cook et al. 

[2013] 

SVM, Naïve 

Bayes, HMM 

CASAS 

dataset 

-SVM:

91.52% 

-NB: 90.82%

-HMM:

90.85% 

(Mitja 

Luštrek, 

2008) 

SVM, Naïve 

Bayes, 

Random 

Forest  

Real-

world 

dataset 

-SVM: 97.7%

-NB:84%

-RF: 93.4%

Ravi et al. 

[2010] 

Decision 

Tree (C4.5), 

SVM, Naïve 

Bayes  

-SVM:

98.16% 

-DT: 98.53%

-NB: 98.86%

Markus 

Prossegger 

[2014] 

Decision 

Tree  

(extension of 

ID5R) 

ARAS 82% 

Tobias et al. 

[2015] 

Random 

Forest, Naïve 

Bayes, SVM 

-RF: 96.53%

-NB: 89.89%

-SVM:92.34%

-RF: 71.33%

-NB:

27.88% 

-SVM:

41.23% 

Lu Xu et al. 

[2017] 

Random 

Forest, 

Artificial 

Neural 

Network, 

-RF: 90%

-DT: 75%

-ANN:80%
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Decision 

Tree 

Ramon et al. 

[2018] 

Decision 

Tree, SVM, 

Naïve Bayes, 

Random 

Forest  

Real-

world 

dataset 

-RF: 84%

-DT: 81%

-NB: 78%

-SVM: 85%

Crandall et 

al. [2008] 

Naïve Bayes Real-

world 

dataset 

92% 90% 

Crandall et 

al. [2010] 

Naïve Bayes, 

HMM 

CASAS -NB:93.3%

-HMM: 94%

Cook et al. 

[2010] 

Bayes 

Network, 

HMM 

Real-word 

dataset 

-BN: 57%

-HMM: 90%

-HMM:94% -HMM:

93% 

-HMM:

96% 

Chen et al. 

[2014] 

HMM, CRF CASAS -HMM: 97.4%

-CRF: 97.25%

-HMM:

40.48% 

-CRF:

39.99% 

-HMM:

80.03% 

-CRF:

80.05% 

-HMM:

81.92% 

-CRF:

79.91% 

Table 2.4 The summary of selected research 

2.5 Research challenge and gap 

In order to bring the multi-resident activity recognition systems enter a more mature stage, some 

research approaches need to be studied further. Next, we will describe some limitations and open 

issues for multi-resident activity recognition. As we said before, the single resident situation still 

has some problems which need to be solved. The multi-resident setting is more complicated and 

there are some limitations which can be improved. Although more and more researchers have 

studied the multi-resident activity recognition in recent years, we can say that it still in its infancy. 

We will highlight some research gaps in this section in order to make significant advances in 

multi-resident activity recognition. 

2.5.1 Existing evaluation and incomplete 

In real-world situations, human activities are often complex. The existing research literature on 

multi-residents has not solved the problem of cooperative activities fundamentally. For different 

situations, for example, multiple residents carry out staggered or parallel activities ate the same 

time, or each resident carries out activities simultaneously or in a staggered manner. For the same 
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kind of activity, due to the change of the human body scale, the data collected by the sensor will 

be different when different people are doing the same action. There exist more complex situations 

in which a resident switch between an activity and a collaborative activity or performs both in a 

concurrent manner. In addition, the different habits of each person can also lead to bias in the 

recognition of movements. For example, one person prefers writing papers while listening to 

music and another person prefers quiet. Long-term collection of everyone's habits and behaviour 

is time-consuming, so the existing multi-person activity recognition research is carried out using 

the same people and sets of activities. However, the situation in real life is more complex, and the 

existing research does not directly reflect the actual situation. Therefore, we need to further study 

the characteristics of these actions in order to identify activities that are more complicated.  

In complex scenes, obstacles or other objects often obscure activities. Also, different 

environments and sensors can also interfere with the recognition of movements. Changes in the 

environment can easily lead to the failure of a fixed apparent model of human activity. The impact 

of these environmental factors will result in the computer getting different observations, and 

activity recognition algorithm needs to be able to tolerate the existence of these changes. At the 

same time, the type and placement of the sensor can have an impact on the algorithm. For device-

free sensors, the biggest challenge is how to identify individuals accurately. Current studies such 

as (Forkan, Khalil, Tari, Foufou, & Bouras, 2015; ZDRAVEVSKI, LAMESKI, & TRAJKOVIK, 

2017) used wearable sensors to solve identity individuals problem, but some people are reluctant 

to wear these devices. Most existing works evaluate their proposed solution for changes for a 

short period, and some of them used wearable sensors as an assistant. Thus, the handing of 

dynamic changes over a long run and balanced use of sensors should be investigated. 

Many papers published focus on the field of multi- resident activity recognition. However, 

nearly all of them evaluate the resulting basis on the two-resident situation due to the lack of 

suitable datasets. Most of researches haven’t investigated the scalability of the models proposed. 

For the scalability of the activity model, we mainly focus on two aspects. The first one is the 

scalability of activities. When residents perform new activities, or they receive new guests, the 

proposed activity model should recognise these activities. The second one is scalability of 

increasing number of persons (A. Benmansour et al., 2015). Current studies mainly considered 

two-resident scenario (Alemdar & Ersoy, 2017; Roy, Misra, & Cook, 2016; Yin et al., 2016a), but 

we still need to improve the models to deal with a large number of residents.  
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2.5.2 Open issues and research gap 

In real life situation, human activities are often executed in a more complicated manner even 

sometimes more than two residents perform cooperative activities together (Yin et al., 2016a). 

Although more and more research has addressed interleaved or concurrent activities by multi-

residents, there is hardly any research dealing with multi-resident addressing the problems of 

more than two residents working together.  

Specifically, there are two types of activities in the multi-resident activity recognition should 

be studied in the future. Firstly, concurrent activities or interleaved activities performed by more 

than two residents (Zhao, Wang, & Lu, 2017). We believe that the difficulty will geometrically 

increase once there are more than two residents in the smart home environment. Secondly, the 

most difficult activities for recognition must be the collaborative activities recognition in multi-

resident situations (Roy et al., 2016). The existing research has not yet fully addressed the 

problems of collaborative activities recognition in two residents. Thus, it will still face even more 

challenges if more than two residents do some collaborative activities. 

With the rapid advance of communication technology and sensor technology, increasing 

multifunctional sensors can be used to identify human activity. As people attach importance to 

privacy, device-free sensors will be the focus of development. It not only effectively identifies 

human activities but also does not involve the disclosure of human privacy. Although there have 

been many studies such as (Alemdar & Ersoy, 2017; Yin et al., 2016a) who applied device-free 

sensors for multi-resident activity recognition, there are still many difficulties in data association 

and individual identification. Meanwhile, some studies (Garcia-Ceja, Galván-Tejada, & Brena, 

2018a; Huang & Dai, 2017) used PIR sensors, which can capture some analogue signal to analyse 

the activity and then can recognising the different human activities. 

Deep learning is a complex machine learning algorithm that produces good results in speech 

and image recognition. Deep learning enables the computer to imitate people’s audio-visual and 

thinking. It solves many problems of complex pattern recognition and makes great advances in 

artificial intelligence-related technologies. Some international companies such as IBM, Google 

and others have conducted speech research using DNN (Deep Neural Network). It has been 

applied in the field of activity recognition in (Wang, Zhang, Gao, Yue, & Wang, 2017). Compared 

with other methods, the proposed method will be less labour-intensive and allow time for feature 
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selection. The result shows that the proposed method can not only realise people’s location but 

also identify the activity recognition. Therefore, we have reason to believe that deep learning can 

be ideally applied to the field of multi-resident activity recognition.  

2.6 Summary 

This chapter is mainly about analysis of existing literature. In the first section we talked about the 

overview of HAR. We described different types of activity recognition and then expounded on 

the general structure of activity recognition. Then we classified and discussed different models 

for multi-resident activity recognition and enumerated those models that are more likely to be 

used for multi-resident activity recognition in the future but are currently only used for single-

resident activity recognition. In the third section we discussed the datasets and evaluation methods. 

In terms of datasets, CASAS and ARAS are the two most important datasets, but more and more 

researchers are beginning to collect real-world data for research. For the evaluation method, 

accuracy, precision, recall and F-measure are mainly used for evaluation. The last section is about 

research challenges and limitations.  
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Chapter 3 Methodology 

In this chapter we mainly talk about how to use specific methods to answer research 

questions. In the process of activity recognition, the first step is collecting raw sensor 

data and then pre-processing and segmenting the raw data in different ways based on the 

requirement. The next step is feature extraction. Different data features are extracted from 

processed data. The last step is classification which is focus of this chapter. Throughout 

the chapter, we describe the model that we used to understand the research more clearly. 



34 

 

3.1 Introduction 

From the literature study, we have gained a basic concept of how to carry out activity recognition. 

In this section, we describe a research method to address the research question. Then we give 

brief overview of our proposed solution for complex multi-resident activity recognition to provide 

a basic understanding of our approach. The framework is shown in Fig.3.1.  

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1 The structure of activity recognition 

As shown in Fig.3.1, the flowchart is the basic concept of the specific research process. In 

our proposed method of identifying multi-resident complex actions, the first step is collecting 

human action data. There are different recognition techniques for the multi-resident activity 

recognition based on sensor deployment strategies. In our research, we selected public datasets 

which are ARAS and CASAS. The details will be addressed in Section 3.2. 

The second step is data pre-processing. We need to process the raw data acquired by the 

sensor so as to improve the quality of data mining, then that processed data can be used in the 

later experimental stages. Data pre-processing is a very important step in the whole process 

because it affects the accuracy of the output results, also the recognition results of the final model. 

The third step is using classification model to classify activities. In traditional machine 

learning activity recognition, we have to extract and select features before performing activity 

classification. These features include a peak-to-peak amplitude, a passage duration, the number 

of peaks, a time for a wave peak to return to the reference line. In this way, activity recognition is 

a supervised learning method, which generates data by collecting predefined activity classes and 

mapping them to sensory readings. The main purpose of classification is to identify household 

living activities from temporal-sequence motion sensor data. In this research, we select 6 general 

machine learning classification models: Bayes Network (BN), Naïve Bayes (NB), Support Vector 

3.2 

Data acquisition 

(Public datasets) 

3.3 

Data pre-processing 

3.4 

Classification 

Models 

3.5 

Evaluation Methods 

(Evaluation metrics) 



35 

Machine (SVM), Decision Tree (DT), Random Forest (RF) and Hidden Markov Model (HMM). 

After training the existing experimental data, then predicted the target sample.  

The last step is evaluation of the result using metrics. The evaluation method should describe 

how data is used and trained, as well as how it is validated and tested. The performance metrics 

used to evaluate models are important in the validation of each classification model. Choosing 

the appropriate metrics depends largely on the specific problem (e.g., classification, regression). 

In the following section, we will display 4 criteria used in this research to evaluate the 

performance of multi-resident activity recognition; these are precision, recall, F-measure and 

accuracy. Finally, in order to confirm the experiment result we use statistical test.  

3.2 Data acquisition 

At present, the development of HAR system is mainly targeted on developing and evaluating 

datasets to a great extent. Some publicly available datasets are important for evaluating activity 

recognition classification algorithms. Currently, there are lots of datasets about single resident 

used in activity recognition (L. P. Daniele Riboni, Laura Radaelli, Claudio Bettini, 2011), 

Kasteren et al. (T.L.M. van Kasteren, 2010). However, there is a real dataset which named CASAS 

(Center for Advanced Studies in Adaptive Systems) which is collected from multi-resident house. 

The CASAS dataset included several datasets which are “twor.2009,” “twor. summer.2009,” 

“twor.2010,” “Tulum,” “tulum2,” “cairo,” and “Multi-resident ADLs.” The other dataset, called 

ARAS which contains two House A and House B datasets. To our knowledge, these datasets are 

the only ones that can be publicly recorded from multiple residents using pervasive sensors. So 

in our research we chose the number of them as experiment datasets. Table 3.1 summarises the 

characteristics of the two multi-resident datasets, which will be described in the following sections. 

Dataset No. of 

residents 

Duration No. of 

sensors 

No. of 

ADL 

No. of 

sensor 

event 

Environment Scripted Annotation 

medium 

House 

A of 

ARAS 

1 pair 1 month 

(continuous) 

20 27 2592000 Real house No GUI 

House B 

of 

ARAS 

1 pair 1 month 

(continuous) 

30 27 2592000 Real house No GUI 

“Multi-

Resident 

26 pairs Spread over 

2 months 

37 15 17258 Lab. Yes diaries 
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ADLs” 

“twor. 

2009” 

1 pair Continuous 

period of 2 

months 

71 9 137789 Lab. No diaries 

“twor.su

mmer. 

2009” 

1 pair Continuous 

period of 

2 months 

86 8 772544 Lab. No diaries 

“twor. 

2010” 

1 pair 2009–2010 

academic 

year 

87 13 2804813 Lab. No diaries 

“tulum” 1 pair 4 months 

(Several 

days are 

missing) 

20 9 486912 Lab. No diaries 

“tulum2

” 

1 pair 2009–2010 

academic 

year 

36 15 1085902 Lab. No diaries 

“cairo” 1 pair +1 

pet 

Continuous 

period of 

2 months 

32 11 726534 Lab. No diaries 

Table 3.1 Characteristics of ARAS and CASAS multi-resident datasets 

3.2.1 CASAS datasets 

CASAS is a multi-resident dataset based on clinical questionnaires collected from the WSU 

intelligent apartment test-bed (Reisberg et al., 2001). The dataset is annotated by recording the 

start and end times of daily activities. There are two types in the CASAS dataset: first one is 

unscripted active datasets, including "twor.2009", "twor", "Summer.2009", "Twor.2010", 

"Tulum", "Tulum2" and "Cairo". In this experiment, we selected "twor.2009" and "Twor. 2010". 

The other one is a scripted active dataset such as "multi-resident ADL". Various types of non-

intrusive sensors, such as temperature sensors, pressure sensors, motion sensors and light switch 

sensors, are installed on the WSU smart apartment test bench. Detailed summary information is 

shown in Table 3.2. We will discuss in detail of unscripted and scripted datasets information 

further. 
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Table 3.2 Summary of CASAS datasets (WSU CASAS Datasets, 2007)  
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• Unscripted Multi-resident datasets

According to the existing literature, there are six datasets which are “twor.2009”, 

“twor.summer.2009”, “twor.2010”, “Tulum”, “tulum2” and “cairo”, have not been used as 

experimental data in the research of multi-resident activities. By understanding the datasets’ 

information, we know that each dataset was collected by a pair of residents who performed 

unscripted activities. In detail, "tulum" and "tulum 2" mainly collected the activity data of a 

married couple, whereas "cairo" contains three kinds of data: the activity data of a couple, the 

motion data related to their dog and the data of occasional visits by their children. The “twor.2009” 

and “twor.2010” also collected by two residents of their daily life. This also reflects the variability 

of the subjects. All datasets are continuous for recording activities. The total length of "twor.2009", 

"twor.summer.2009" and "cairo" is two months, and "tulum" takes four months, while 

"twor.2010" and "tulum 2" have gone through a whole year. The dataset details, including Date, 

Time, Sensor ID, Sensor value, etc., are recorded and described in tables. Each activity is recorded 

in Residentid_ActivityName Begin and Residentid_ActivityName End. 

• Scripted Multi-resident datasets

Unlike previous datasets, “Multi-resident ADLs” collection has been used in many research 

(Hande Alemdar，Cem Ersoy, 2017) (U. A. B. U. A. Bakar, 2015) (Jeremie Saives, 2015). But it 

was collected in the laboratory, so to some extent, it is not able to reflect the real life of residents. 

Secondly, the dataset is not continuously recorded. "Multi-Resident ADL" is a dataset consisting 

of 26 pairs of volunteers who perform activities that have been pre-planned. The activities details 

shown in Table 3.1. The dataset includes repeated activities within two months, some of which 

are performed independently by two residents and most of which are performed by two residents 

in cooperation. This dataset illustrates intrasubject variability. In the “Multi-resident ADLs” 

dataset, activities collected by sensors are manually marked with TaskID and ResidentID 

respectively, and detailed time (including Date, Time, SensorID, SensorValue) of each activity is 

carefully recorded to ensure the accuracy of the label. Each file of the dataset contains 15 activities, 

for a total of 17,232 events. If the event is triggered by two residents at the same time, it is 

represented by the Date, Time, SensorID, SensorValue, Resident ID, TaskID, ResidentID, TaskID. 

Manually annotate the dataset by recording the activity that start and end. 
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3.2.2 ARAS collection 

The ARAS dataset was collected from two real houses with multiple residents and included 27 

different activities (Hande Alemdar, 2013). Each house was equipped with 20 different types of 

binary sensors, and a month of detailed sensor data and activity information was collected from 

each household. As a dataset collected in the real world, ARAS has higher significance than data 

collected in the laboratory environment, because it truly reflects the natural activity of people. 

And this dataset contains more human activity and information than any other dataset. Table 3.3 

shows the activities and sensor infrastructure details of ARAS. The reason for selecting this 

dataset is because it contains higher precision and a larger total number of data points, so it has 

more profound significance for training machine learning models. 

Table 3.3 Activities and Sensor infrastructure of ARAS (Ifat Afrin Emi & John A 

Stankovic, 2015) 

As far as we know, recorded and annotated datasets are very important for studying multi-
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resident activity recognition. In ARAS data set, binary sensors are selected, including infrared 

sensors, temperature sensors, pressure sensors and so on. From these, 7 species are placed in 

House A and 6 species are placed in House B. Refer to Fig.3.2. One set of the participants was 

two males and the other set was a married couple. In the process of collecting the data, no cameras 

of any type were used and no tags were installed on residents in consideration of privacy and 

other important factors. The entire dataset consists of a 22*86400 matrix stored in the file. House 

A and B files contain 30 documents in each of them. In the matrix, the first 20 columns display 

the sensor binary value, 0 or 1; the remaining two columns are active labels for Resident 1 and 

Resident 2. There were 2,177 activities in House A and 1,023 in House B. In order to better 

understand the sensor dataset, Fig.3.3 shows the activity duration distribution of the two residents 

in House A during 30 days. Through the time distribution map, we can get a clearer understanding 

of the lifestyle of each resident. In (Hande Alemdar, 2013), Hande et al. used HMM to model 

activities and sensor then reported the percentage of correctly classified labels for 30 days. The 

results show that the average accuracy of A house is 61.5%, and that of B house is 76.2%. 

(a) House A
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(b) House B

Fig.3.2 Layouts of the Houses(Hande Alemdar, 2013) 

(a) Resident1
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(b) Resident2  

 Fig.3.3 Activity duration distribution of House A (Hande Alemdar, 2013) 

3.3 Data pre-processing  

In the process of data mining, the data we use must conform to the following principles: give 

explicit meaning to attribute names and values as much as possible: remove unique attributes; 

remove repeatability and select the associated field correctly (Kotsiantis, Kanellopoulos, & 

Pintelas, 2006). Data preprocessing, as an important part of data mining, refers to the necessary 

processing such as audit, screening, sorting, transformation, protocol and summary before 

classification or grouping of the collected data. (García, Luengo, & Herrera, 2015) Through data 

acquisition, most of the raw data exhibit different kinds of problems such as irregular information, 

data not belonging to the same dimension, missing key data points, and data types do not meet 

the requirements. However, the quality of data determines the prediction and generalisation ability 

of the model directly. It involves many factors, including accuracy, completeness, consistency, 

timeliness, credibility, and interpretability. So we need to use different processing methods to 

organise the data. The quality of data and features determines the final effect of machine learning 

model. 

In a previous study, Crandall and Cook et al. (Crandall & Cook, 2008) adopted the data 

preprocessing method to generate new features after extracting the features from the original data. 

They extracted more specific features from dates and times, such as "a day of the week" or "an 

hour of the day," to deal with data association problems. Their research suggests that the temporal 
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features vary widely in capturing individual behavior. Moreover, when the time feature is "an 

hour of the day", the classifier performance of resident recognition is optimum. They also show 

that using different types of data characteristics can lead to different classification results such as: 

residents' daily living habits, laboratory environment or real homes. Among them, the hour is the 

most discriminating feature. In addition, in the comparing of Naïve Bayes and HMM, they found 

that feature extraction was not applicable to all classification models because the effect on HMM 

was not obvious.  

In order to better determine the experimental effect of data preprocessing, Hus et al. started 

from three aspects: environmental data, room-level data and raw data (Hsu et al., 2010). Among 

them, environmental data is all sensor data collected in the whole house. Room-level data divides 

all environmental data into different rooms. If someone triggers the motion sensor in the room, 

the state of the sensor will be displayed as "on". However, according to the author's research, 

environmental data does not help to distinguish residents. When people are in a multi-resident 

environment, there is no way to know exactly who triggered the sensor based on the data. For 

room-level data, the author adopts the preprocessing method, and each room is represented by 

features. The results show that the accuracy of combining the raw data with the model is the 

highest, up to 64%. The other two kinds of data are around 30% accurate. They argue that if 

environmental data were used, all the information will have too much noise and this will affect 

the accuracy of the model. The low accuracy of room-level data is due to the small dependencies 

between its functions and related activities. To sum up, in this study, we used the raw data, 

followed by cleaning, integrating and reduction the data. More details are shown in the following 

subsection.  

3.3.1 Data cleaning  

The raw data we collected from the sensor contains redundant information and even erroneous 

data to some extent. Most of these data are caused by sensor faults or intermittent communication 

signals. So it is a necessary step to clean data for the training model. The purpose of the cleaning 

is not only to eliminate errors, redundancy, and data noise, but also to align datasets from different 

and incompatible rules (Hand, 2006). Fig.3.4 shows the cleaning process clearly. In the process 

of obtaining information and data in the real world, there will be various reasons for data loss and 
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vacancy. In the case of lack of data, we usually adopt the following methods:  

When we have a large dataset and lack multiple values in tuples, we can ignore tuples. Or if 

the missing rate of the variable is higher (more than 80%) and the coverage and importance are 

lower, we can directly refer to the deletion of this variable (García et al., 2015).  

Secondly, when the missing rate and importance of variables are low, we can choose to fill 

in the attribute mean manually to make up the missing value. When the dataset contains noisy 

data, we usually use binning methods. Since the dataset we selected is sorted, the whole data is 

divided into segments of the same size for individual processing. 

 

Fig.3.4 Data cleansing(trifacta, 2019) 

Wilson and Atkeson (Daniel Wilson, 2005) collect raw data from binary sensors and RFID 

sensors in the sensor environment and pre-process the data using Bayes and particle filters. 

Experimental results show that Bayes filter can track users well despite noise. Particle filters work 

well with multiple users. Guettari et al. (T. Guettari, 2014) selected sensor datasets collected in 

different areas of the smart home and preprocessed them with median filters, which can largely 

avoid abnormal measurements. 

There are two obvious problems with sensor data collected from intelligent environments: class 

imbalance and class overlap. These two factors may affect the accuracy of data analysis and 

classification. The class imbalance is mainly manifested in the fact that some activities occur more 

times than others, leading to insufficient compensation in the training process. Class overlap is 

represented by many repeated activities, leading to ambiguity. To overcoming the above two 

problems, Barnan et al. (Barnan Das, 2013) proposed a clustering-based under-sampling 

(ClusBUS), This method is applied to CASAS dataset to deal with the data overlap points with 

unbalanced class distribution. Experimental results show that this method can provide important 

information for minority groups.  
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3.3.2 Data reduction 

When we need to deal with complex data, we spend a lot of time in data analysis and data mining. 

The advent of data reduction techniques can help us simplify datasets without compromising the 

integrity of the original data, and at the same time produce high quality data. There are some 

strategies for data reduction. For example, numerical reduction; Selection of attribute subsets 

(detecting and removing redundant and irrelevant feature dimensions); Aggregate operations are 

used when the dataset has multidimensional data. Data reduction works in two ways: by reducing 

the number of volumes and attributes (dimensions). In our experiment, the activity data of 

residents in the multi-resident data set of CASAS are composed of many days, so we segment the 

activity data, which will greatly reduce the sample of initial and transitional estimation. So a 

sequence is formed for each file and then a 10-fold cross-validation of the 26 activity sequence is 

performed.  

3.4 Classification Models 

Recognition classifiers are inseparable from machine learning. Machine learning can be divided 

into three categories: unsupervised learning, semi-supervised learning and supervised learning. 

As a small branch of machine learning, HAR is often carried out by supervised learning. The 

classification model is trained by the training sample set of the known category, and then the 

unknown data category is identified based on the trained model, which is classified into one of 

the known categories. The training sample set consists of several training samples with the same 

format. Each training sample consists of a known action label and a feature vector which is 

composed of multiple feature attribute values. It can be expressed as as <𝑤1, 𝑤2, , ... , 𝑤𝑛, 𝑐𝑖> 

where  𝑤𝑖  represent the feature attribute value and 𝑐1  represents the action label. In HAR, 

different recognition algorithms are selected, and the methods of building recognition models are 

also different. The evaluation of a recognition algorithm mainly includes the following four 

aspects:  

(1) Recognition accuracy: 

which means the ability of the model to correctly identify test data sets. 

(2) Recognition speed: 

which means the time spent on training recognition models and using them to identify. 
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(3) Robustness:

the ability of the model to accurately identify when the data contains noise points or

missing values.

(4) Scalability:

the ability to efficiently train the model when the training set is large.

The activity recognition models used by the research are: Bayes Network, Naïve Bayes, 

Support Vector Machine, Decision Tree, Random Forest and Hidden Markov Model.  

3.4.1 Bayes Network 

Bayes network, also known as reliability network or belief network, as an extension of Bayes 

method, was proposed by Pearl in 1988. It is a theoretical model for uncertain knowledge 

representation and reasoning which is more effective. It has become a hot research topic in recent 

years. It avoids using joint probability to infer directly and instead uses the independent 

relationship between variables to divide jointly. The Bayesian network can qualitatively and 

quantitatively analyse the dependencies between features, and then establish the network structure 

for probabilistic reasoning. This classification process based on probability theory can effectively 

guarantee the correctness of reasoning structure. Bayesian network consists of two parts, network 

structure and parameter structure. The network structure is a directed acyclic graph, in which the 

nodes represent random variables, the edge between nodes represents the dependence between 

variables; parameter structure refers to the local probability dependence, and each node has a 

probability distribution. Therefore, the learning of Bayesian networks is divided into two 

processes: structure learning and parameter learning. In order to illustrate the two learning 

processes of Bayesian networks, this paper assumes that class variables are represented by C, and 

attribute change. The attribute variable set is 𝑋 = {𝑋1 , 𝑋2 ,…, 𝑋𝑛  (ASMA BENMANSOUR,

2016). The dataset 𝐷 = {𝑢1,…, 𝑢𝑑,…, 𝑢𝑚 , where 𝑢𝑑 = {𝑥1
𝑑, 𝑥2

𝑑,…, 𝑥𝑁
𝑑 , 𝑐𝑑  represents the

value of the N attribute variables and the metric of the category C in a data sample. Now we know 

a sample 𝑥𝑑 = {𝑥1
𝑑, 𝑥2

𝑑,…, 𝑥𝑁
𝑑 , and the classification prediction is based on its attribute variable

to predict the value of its class variable C. 

Structural learning of Bayesian networks refers to the process of generating the network 

topology structure with the highest fitting degree with the given data set. If the unknown network 
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structure is represented by 𝐵𝑠 , then the network structure 𝐵𝑠  with the greatest posteriori

probability 𝑝(𝐵𝑠|𝐷) is required according to the known data set D. According to the Bayesian

formula (Friedman, Geiger, & Goldszmidt, 1997) in Eq.3.1: 

𝑝(𝐵𝑠|𝐷) =
𝑝 (𝐵𝑠,𝐷)

𝑝(𝐷)
=

𝑝 (𝐷|𝐵𝑠) 𝑝(𝐵𝑠)

𝑝(𝐷)
   (3.1)

Where 𝑝(𝐷) is the normalization coefficient related to dataset D, p (D|𝐵𝑠) is the boundary

likelihood. Based on boundary likelihood find out logarithmic likelihood in Eq.3.2:  

LL(𝐵𝑠|𝐷) = ∑ 𝑙𝑜𝑔 𝑝𝐵𝑠

𝑁
𝑑=1 (𝑢𝑑)= ∑ 𝑙𝑜𝑔 𝑝𝐵𝑠

𝑁
𝑑=1 (𝑐𝑑  |𝑥1

𝑑, 𝑥2
𝑑,…, 𝑥𝑁

𝑑) + 

∑ 𝑙𝑜𝑔 𝑝𝐵𝑠

𝑁
𝑑=1 (𝑥1

𝑑, 𝑥2
𝑑,…, 𝑥𝑁

𝑑) 

(3.2) 

The first item in Eq.3.2 is conditional logarithmic likelihood of class variables for given 

attribute variables, and the second item is joint distribution likelihood of predicted attributes for 

𝐵𝑠. For classification, only the first item related to posterior probability is concerned.

3.4.1.1 Related Algorithm 

It will be a NP problem to search for the best topological structure from all possible network 

structures, so it is common for Bayesian networks to use many heuristic algorithms as search 

algorithms for structure learning. There are K2, TAN, Hill-climbing, Simulated Annea-ling and 

so on. In this paper, we chose Tree Augmented Naïve Bayes (TAN), K2, HillClimber and 

TabuSearch used as a search algorithm for structural learning of Bayesian network classifiers.  

• TAN (Tree Augmented Naïve Bayes)

TAN is based on the Naïve Bayesian Network, which relaxes the assumption that Naïve 

Bayesian requires conditional independence among attributes, and allows each attribute node to 

rely on, at most, one non-class node, that is, to allow each node to have a parent besides the class 

node.  

Firstly, the mutual information function between any two attribute variables is defined as in 

Eq.3.3: 

F(𝑋𝑖, 𝑋𝑗|C)= ∑ 𝑃 (𝑥𝑖 , 𝑥𝑗|𝑐)𝑥𝑖,𝑥𝑗,𝑐 𝑙𝑜𝑔
𝑃 (𝑥𝑖,𝑥𝑗|𝑐)

𝑃 (𝑥𝑖|𝐶)𝑃 (𝑥𝑗|𝐶)
   (3.3) 

This mutual information function represents the weight between any two attribute variables. The 
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larger the weight, the greater the dependence between attribute variables 𝑋𝑖 and 𝑋𝑗 and, the 

more likely that the parent-child relationship exists. On the contrary, there is no parent-child 

relationship between the two variables. The process of establishing Bayesian network structure is 

as follows. 

1) Calculate conditional mutual information between every two attribute variables 

F(𝑋𝑖 , 𝑋𝑗|C) 

2) Establishing the complete undirected graph of a node which is a set of attribute variables 

{𝑋1, 𝑋2,…, 𝑋𝑛}. The mutual information of two attribute variables connected by either 

side is taken as the weight of that side. 

3) The edges are sorted according to their weights, and the maximum spanning tree is 

composed of the edges selected in the order of the weights from large to small according 

to the principle that they cannot form a loop. 

4) Choose a root node and set the direction of all edges from the root node outward to form 

a directed tree. 

5) Adding class variable nodes and adding edges from class nodes to attribute nodes. 

• K2 algorithm  

K2 algorithm is the most famous fractional based on Bayes Network in recent decades. It uses 

greedy search to process the model selection. Firstly, a scoring function is defined to evaluate the 

structure of the network. Then starting with a network, the highest score node is selected as a 

parent node according to the node order and the number of parent node. There is no restrict on the 

number of parents node. When the score stops to increase, the node stop adding partents (Cooper 

& Herskovits, 1992). 

• HillClimber 

HillClimber is a heuristic search algorithm which tries to find the optimal solution within a 

reasonable time. Similar to K2 algorithm, it is also use greedy search to find the optimal node. 

The difference is that the HillClimber checks each neighbouring node one by one and then selects 

the best node as the next node. The algorithm has three types which are Simple HillClimbing, 

Steepest-Ascent HillClimbing and Stochastic HillClimbing (Rawat).  

• TabuSearch 

TabuSearch algorithm is the improvement of HillClimber algorithm. In HillClimber, we can 

only search the local optimal solution, and the obtain result is completely dependent on the 
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relationship between the initial solution and the neighborhood. The improvement is proposed in 

TabuSearch. The outstanding characteristic of the algorithm is that it does not take the local 

optimal solution as the stop criterion (Brownlee, 2011). 

3.4.2 Naïve Bayes  

Naïve Bayesian algorithm is one of the most efficient algorithms in the field of machine learning 

and data mining. It is widely used in classification and other issues. At present, the Naïve Bayesian 

algorithm is also commonly used in HAR. Based on Bayesian theory, the algorithm has the 

advantages of fast training and recognition, lower error rate and fewer parameters to be estimated. 

It can handle both discrete and continuous data well. At the same time it is insensitive to missing 

data. The idea of the algorithm is simple and relatively easy to implement. The disadvantage is 

that the attributes of the feature vector need to be independent of each other. 

 In activity recognition, Naïve Bayesian is a typical classification model based on statistical 

method. It uses the prior information of training set and the sample data of test set to determine 

the posterior probability of time, and then decides the action according to the posterior probability. 

 The classification in activity recognition is described as: classifying the feature a(𝑤1, 𝑤2, ... , 

𝑤𝑛 ) representing the vector into the category 𝑐𝑖  with the largest probability value, where 

𝑐𝑖 ∈(𝑐1, 𝑐2, 𝑐3,..., 𝑐𝑚), 𝑤1, 𝑤2, ... , 𝑤𝑛 are the features of a. 

Separate calculation of the probability 𝑃1, 𝑃2,𝑃3,…, 𝑃𝑚 that a (𝑤1, 𝑤2, ... , 𝑤𝑛) belongs to 

the categories 𝑐1 ,  𝑐2 ,  𝑐3 ,..., 𝑐𝑚 . Where 𝑃𝑚  is the probability that feature combination 

a(𝑤1, 𝑤2, ..., 𝑤𝑛) belongs to action class 𝑐𝑚. Finally, through MAX (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑚) gets the 

action class of feature combination a. MAX(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑚) represent the maximum value of 

𝑃1, 𝑃2,𝑃3,…, 𝑃𝑚.  

The definition of Bayesian formula is shown in Eq.3.4. Let the event group (𝐴1,𝐴2，..., 𝐴𝑛) 

be a complete event group, B be any event, and P(𝐴𝑖)>0(i=1,2,…,n), P(B )>0, then:  

P(𝐴𝑖|B)=
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

∑ 𝑃(𝐴𝑖)𝑛
𝑗=1 𝑃(𝐵|𝐴𝑖)

                (3.4) 

According to the definition of Bayesian formula, the denominator ∑ 𝑃(𝐴𝑖)𝑛
𝑗=1 𝑃(𝐵|𝐴𝑖) is a 

fixed value. To find MAX(P(𝐴𝑖 |B)): 

Under B condition, the maximum value of the probability P(𝐴𝑖 |B) that 𝐴𝑖 occurs, where 𝐴𝑖 

belongs to event group ( 𝐴1 , 𝐴2 ， ..., 𝐴𝑛 ). So it only needs to calculate the molecular 
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𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖). For action recognition classification, the formulas for finding P (𝑐𝑖|𝑤1, 𝑤2, ..., 𝑤𝑛) 

is shown in Eq.3.5.  

P(𝑐𝑖|𝑤1, 𝑤2, ... , 𝑤𝑛)=
𝑃(𝑤1,𝑤2,...,𝑤𝑛|𝑐𝑖)𝑃(𝑐𝑖)

∑ 𝑃(𝑤1,𝑤2,...,𝑤𝑛|𝑐𝑗)𝑃(𝑗)𝑚
𝑗=1

      (3.5) 

 The definition of P(𝑐𝑖): In the training set of feature vector, the probability that the feature 

vector belongs to the action classes 𝑐𝑖  is called a priori probability. P (𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑖) 

implies that the conditional probability of generating the classified feature vector a ( 𝑤1, 𝑤2, ..., 

𝑤𝑛 ,) from the class 𝑐𝑖 . where the denominator ∑ 𝑃(𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑗)𝑃(j)𝑚
𝑗=1   is the joint 

probability of all action class. According to the previous analysis of Bayesian formula, 

denominator is a fixed value for all given classes. 

It is required to find out which class is the feature vectors to be categorised belong to, and 

ultimately convert them into solving 𝑐𝑖, ∈(𝑐1, 𝑐2, 𝑐3,..., 𝑐𝑚). The maximum value of formula 

P (𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑖) 𝑃(𝑐𝑖) as shown in Eq.3.6. 

        𝑚𝑎𝑥
𝑐𝑖∈𝐶

𝑃 (𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑖) 𝑃(𝑐𝑖)          (3.6) 

Therefore, assuming that feature words are independent of each other, formula 

P (𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑖) 𝑃(𝑐𝑖) can be expressed as Eq.3.7 

  𝑃 (𝑤1, 𝑤2, . . . , 𝑤𝑛|𝑐𝑖) 𝑃(𝑐𝑖)=∏ 𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖)𝑛
𝑘=1        (3.7) 

Finally, Eq.3.6 is converted to Eq.3.8  

          𝑚𝑎𝑥
𝑐𝑖∈𝐶

∏ 𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖)𝑛
𝑘=1                  (3.8) 

In the process of continuous multiplication calculation, because the probability value of each 

feature is relatively small, the dimension of feature is relatively high, and even have more stages 

of multiplication. So there will be underflow. In order to prevent the above-mentioned situation, 

the logarithmic operation of Eq. 3.8 is carried out, and Eq.3.8 is converted to Eq.3.9.  

𝑚𝑎𝑥
𝑐𝑖∈𝐶

{𝑙𝑛 𝑃(𝑐𝑖) + ∑ 𝑙𝑛 𝑃(𝑤𝑘|𝑐𝑖)𝑛
𝑘=1 }          (3.9) 

In action classification, each feature records a consists of feature w, which is expressed as a 

(𝑤1, 𝑤2, ... , 𝑤𝑛). The specific flow chart is shown in Fig.3.5.  
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Fig.3.5 Naïve Bayes workflow in activity recognition 

 Crandall and Cook et al. (Crandall & Cook, 2008) applied raw data to Naïve Bayes model 

for data association, but achieved low performance. Through subsequent studies, we know that is 

due to the imbalance of some training datasets, Naïve Bayes usually allocates activities to 

residents who generate most of the sensor time during operation. Later in the process, Naïve Bayes 

classification ability is significantly improved after adding specific time features such as "one 

hour in a day".  

3.4.3 Support Vector Machine  

Support Vector Machine (SVM) is based on statistical learning theory VC dimension theory and 

structural risk minimization principle. According to the limited sample information, it seeks the 

best compromise between learning ability and model complexity to obtain the best generalisation 
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ability. Support Vector Machine (SVM) seeks the global optimal solution, so it has more 

advantages than other statistical learning algorithms. It is aimed at the problem of two label 

classes classifications and has been extended to multilabel classifications. For the two-label class 

classification problem, the algorithm process is as follows: 

Assuming that the training set can be partitioned by a hyperplane, there exists (w, b) such 

that 

(w𝑥𝑖+b)>0, 𝑦𝑖=1, 

(w𝑥𝑖+b) <0, 𝑦𝑖=-1; 

The ultimate goal of classification is to find the suitable (w,b) to acquire a best accuracy. As 

shown in Fig.3.6.  

 

Fig.3.6 Classification diagram of SVM 

The black solid point and the white hollow point represent two types, respectively, H is a 

separate type of separated hyperplane, H1 and H2 are the samples closest to the separated 

hyperplane and parallel to the plane separating the hyperplanes. The distance between them is 

called the classification interval. The purpose of the support vector machine is to find the optimal 

hyperplane, so that the sample classification interval is largest. There are also 𝑦𝑖(w𝑥𝑖 + 𝑏)≥1, 

i=1, 2,..,n, and the classification interval is 2/||w||. To maximise the classification interval, then 

||w|| is the smallest, which is equivalent to finding 1/2||w||2, so the following optimisation problem 

is obtained in (Yu & Kim, 2012) Eq.3.10: 

𝑀𝑖𝑛
𝑤,𝑏

1

2
||𝑤||2s.t. 𝑦𝑖(w𝑥𝑖 + 𝑏 ≥1,i=1,2,…n          (3.10) 

By applying Lagrangian duality, the optimal solution of the above problem can be obtained 

by solving the dual problem. The Lagrange function is expressed as follows in Eq.3.11:  

L(w,b,𝛼)= 
1

2
||𝑤||2-∑ 𝛼𝑖

𝑛
𝑖=1 𝑦𝑖(w𝑥𝑖+b)+ ∑ 𝛼𝑖

𝑛
𝑖=1        (3.11) 
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Where 𝛼𝑖 >0 is the Langeland coefficient. The training process of the SVM is shown in 

Fig.3.7. 

Extending SVM from two label classes classifications to multilabel classifications is to 

construct a series of two label classes classification machines, in which each of the two 

classification machines can classify one of the remaining types and then classify them. The key 

of SVM is the selection of kernel function. Vector sets in low-dimensional space are usually 

difficult to partition and need to be mapped to high-dimensional space, but that will increase the 

computational complexity. In order to solve this problem, we usually need to introduce the kernel 

function. The commonly used kernels are: 

(1) Linear Kernel function: k(x, 𝑥𝑖) = <x, 𝑥𝑖> 

(2) Polymerization Kernel function：K(x, 𝑥𝑖) = (γ < x, 𝑥𝑖 > +r)𝑑, d represents degree，r 

represents coef().  

(3) Gauss Kernel function: K(𝑥𝑖,𝑥𝑗 )= exp(−γ||𝑥𝑖, 𝑥𝑗||)2,  represents the keyword gamma 

and greater than 0.  

(4) Sigmoid Kernel function: K(x, 𝑥𝑖)=tanh (γ < x, 𝑥𝑖 > +r), r represents coef（） 
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                 Fig.3.7 Training flow of SVM 

3.4.4 Decision Tree 

As a statistical model, the decision tree is generally responsible for supervising the classification 

and prediction of training data (Trevor Hastie, 2009). It is a model to display decision rules and 

classification results with tree data structure. As an inductive learning algorithm, it focuses on 

transforming known instances that seem to be disordered and disorderly into a tree model that can 

predict unknown instances by applying consistent rules.  
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Fig.3.8 shows the overall structure found in a decision tree, it consists of three parts: decision 

node, branch node and leaf node. Each node represents a feature and corresponding decision rules. 

The top node is the root node. At this time, all the samples are together, and after passing through 

the node, they are divided into each sub-node. Each sub-node uses new features to make further 

decisions until the final leaf node. A directed acyclic tree consists of decision nodes, branches and 

leaves. Decision nodes are usually used to represent a problem or decision. In classification 

problems, they usually correspond to a characteristic attribute of the object to be classified. 

Branches often correspond to a new decision node or leaf node of a tree. Leaf nodes are often 

used to represent the classification results. The process of traversing the decision tree from top to 

bottom will correspond to a test output at the node. Different test outputs of the node often 

correspond to different branches until they reach the leaf node. The leaf node stores the decision 

result (Melo & Lee, 2018). The above description is the classification process of the decision tree, 

which uses several characteristic attributes to decide the category of the sample. 

The core idea of a decision tree algorithm is to construct the decision tree; this is constructed 

recursively from top to bottom by a greedy algorithm. To avoid over-fitting caused by noise points, 

pruning is needed. Pruning can be divided into two types: pre-pruning and post-pruning. Pre-

pruning uses stopping the growth of decision tree in advance to prune, and post-pruning is to 

remove some subtrees through specific criteria in the generated over-fitting decision tree, and to 

finally generate a simplified version of the decision tree. 

Decision trees are applicable to both numerical and nominal types (discrete data, where the 

results of variables are only valued in a finite target set). They can read data sets and extract rules 

contained in several columns of data. Especially in classification problems, the decision tree 

model has many advantages, such as low computational complexity, convenience and efficiency. 

The decision tree can process data with irrelevant characteristics and easily construct rules that 

are easy to understand and which are usually easy to explain and understand. The advantage 

makes the decision tree more capable of implementation in real scenarios, because it saves a lot 

of time for in training (Carolin Strobl, 2009; Trevor Hastie, 2009). 
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Fig.3.8 Overall structure of decision tree (Chiu, Yu, Liaw, & Chun-Hao, 2016) 

There are many decision tree algorithms, such as CLS algorithm, SLIQ algorithm, ID3 

algorithm, CART algorithm, C4.5 algorithm, SPRINT algorithm, etc. Among them, ID3 and C4.5 

are commonly used. ID3 and C4.5 are based on information theory. The difference is that ID3 

takes information entropy as the measurement standard, while C4.5 takes information gain (T. 

Guettari) as the measurement standard. C4.5 algorithm is improved based on ID3 algorithm, 

which has higher recognition accuracy and faster calculation speed. Therefore, the C4.5 algorithm 

is chosen.  

The C4.5 algorithm uses information gain rate to select decision attributes, overcomes the 

shortcoming of ID3 when using information gain to select attributes with more values, and can 

process non-discrete data as well as incomplete data. Information gain rate is defined as: 

GainRatio(S,A)= 
𝐺𝑎𝑖𝑛(𝑆,𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑆,𝐴)
 

 Among them, Gain (S, A) is the information gain, and the calculation formula is as follows 

in (Anyanwu & Shiva, 2009; Safavian & Landgrebe, 1991) Eq.3.12: 

Gain(S,A)=Entropy(S)- ∑
|𝑆𝑉|

𝑆𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)  Entropy(𝑆𝑉)     (3.12) 

 In Eq.3.9, v is one of the values of characteristic attribute A, and |SV| is the number of 

training samples when attribute A = v. Entropy (S) is the information entropy, and the 

calculation formula is as follows in Eq.3.13:  

       Entropy(S)=∑ −𝑝𝑖𝑙𝑜𝑔2𝑖∈𝐶 𝑝𝑖                       (3.13) 
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 In Eq.3.10, S is the total number of samples, C is the set of all actions of S, and 𝑝𝑖 is the 

ratio of training set with action i to training set S. 

SplitInfo(S, A) denotes the breadth and uniformity of the sample set S split according to 

attribute A. The calculation formulas are as follows in Eq.3.14: 

SplitInfo(S,A)= -∑
|𝑆𝑉|

𝑆𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) 𝑙𝑜𝑔2
|𝑆𝑉|

𝑆
               (3.14) 

 In Eq.3.14, S is the total number of training samples, v is a value of feature attribute A, and 

the number of samples when feature attribute A is a value of v. Each time, the attribute with the 

largest information gain rate is selected as the decision node until the pruning condition is satisfied, 

and finally the decision tree model is constructed. Pseudo-code is shown in Fig.3.9. 

 

Algorithm: C4.5  

Input: Training samples: collection of candidate attributes Attributelist 

S represents the current sample set, and the current candidate attribute set is represented by A. 

Output: A Decision Tree 

Step:  

1. Create the root node N; 

2. IF S belongs to the same class C, then N is returned as leaf node and marked as class C; 

3. IF Attributelist is empty or the number of samples remaining in S is less than a given value; 

4. Then N is returned as leaf node, mark N is the most frequent class in S; 

5. FOR each Attributelist 

6. Calculate the information gain ratio; 

7. The test attribute of N test.attribute = attributelist has the highest information gain ratio 

attribute; 

8. IF test attribute is continuity 

9. Then find the segmentation threshold of this attribute; 

10. For each new leaf node of root node N 

{ 

11. IF the sample subset S' corresponding to the leaf node is empty; 

12. the leaf node is split to generate a new leaf node, which is marked as the most frequent class in 

S; 

13. Else perform C4.5 formtree (S’, S’.attrbutelist) on the leaf node and continue to split it;  

 } 

14. Calculate the classification errors of each node and prune them. 

15. Returns the root node N 

Fig.3.9 Pseudo code of C4.5 algorithm (Prossegger & Bouchachia, 2014) 
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3.4.5 Random Forest  

The RF classifier belongs to one of the newest algorithms. It is a non-probabilistic decision 

tree-based classifier. The RF algorithm is employing a large ensemble of decision trees to deal 

with both regression and classification tasks. The strengths of the RF algorithm are remarkable 

classification performance along with relatively simple training and tuning. The RF algorithm 

uses a set of classification trees to solve the classification problem, which is based on a recursive 

binary tree and only considers a random subset of available datasets. For each node of each tree, 

we use the method of randomly selecting function subset to find the best segmentation point. The 

optimal segmentation point is determined using GINI index value. To classify the new datasets, 

they are randomly entered into each tree, so that the tree’s majority of voting rights determine 

which tags are assigned. RF algorithms are also used in feature selection. When a particular 

feature is removed from the feature set in the tree, the average accuracy is reduced. If the accuracy 

of a feature is not significantly decreased when it is excluded, the feature does not play an 

important role in the whole dataset. In this project we used the function “RandomForestClassifier” 

in the WEKA learn package for constructing the RF classifier. 

3.4.6 Hidden Markov Models  

The hidden markov Model (HMM) is a generative model. It is used probabilistic to deal with 

sequence problem. The algorithm consists of hidden states and observation variables. Fig.3.10 

shown the structure of the HMM model. At each time point t, a hidden state 𝑦𝑡 related to an 

observable variable 𝑥𝑡. There are two dependency assumption in the HMM. Firstly, each hidden 

state 𝑦𝑡 only depends on the previous hidden state 𝑦𝑡−1. Second assumption is each observable 

variable 𝑥𝑡 only depends on a hidden state that observable variable corresponded at time point t 

(Eddy, 1996).  

 

Fig.3.10 Graph structure of HMM 

Therefore, HMM can be modeled using three probability distributions which are transition 
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probability distribution p(𝑦𝑡|𝑦𝑡−1), initial state p(𝑦1), and the last one is observation distribution

p(𝑥𝑡|𝑦𝑡). The joint probability of the HMM model as following equation:

𝑝(𝑦1:𝑇 , 𝑥1:𝑇) = 𝑝(𝑦1)𝑃(𝑥1|𝑦1) ∑ 𝑝(𝑦𝑡|𝑦𝑡−1)𝑝(𝑥𝑡|𝑦𝑡)

𝑇

𝑡=2

When a labelled dataset {(𝑥𝑡 , 𝑦𝑡)  is given, t = 1, 2, …, T, the distribution of the initial state

𝜋 𝑖= p(𝑦1 = i), i = 1, 2, …, K can be calculated, which represents the state of the HMM when the

first sensor event is appeared. For a state (activity) a, the instance ratio of activity label a is 

calculated. The transition probability 𝑎𝑖𝑗= p(𝑦𝑡 = j| 𝑦𝑡−1= i), i, j = 1, 2, …, K, represents the

possibility of changing from a given state to any other state in the model while capturing 

temperature. In any two states a and b, the transition probability calculation from state a and state 

b is the ratio of the number of instances with active labels a and b to the total number of instances. 

The observation distribution is factorized as: 

𝑝(𝑥𝑡|𝑦𝑡 = 𝑖) = ∏ 𝑝(𝑥𝑡
𝑛|𝑦𝑡 = 𝑖)

𝑁

𝑛

each sensor observation is modeled as an independent Bernoulli distribution as follows: 

𝑝(𝑥𝑡
𝑛|𝑦

𝑡
= 𝑖) = (𝑢𝑛𝑖)

𝑥𝑡
𝑛
(1 − 𝑢𝑛𝑖)

1−𝑥𝑡
𝑛

where 𝑢𝑛𝑖= p(xn𝑥𝑛|y = i) (i = 1, 2, …, K, n = 1, 2, …, N) is calculated by finding the frequency

of the nth sensor event observed for each activity. 

It is possible to separate activity data when the activities are sequential, and then the HMM 

model can be created for each activity. However, the HMM method cannot reflect the 

interlacement of the activities. Thus the method is not suitable for interleaved activities. Another 

problem of HMM method is how to find the optimum number of hidden states for an HMM model 

corresponding to an activity. Creating an HMM for each activity would lead to having the same 

sensor model for each activity, but the number of hidden states for each activity is unknown. In 

fact, the authors in Khanetal (Khanetal, 2012) proposed to find the optimum number of hidden 

states through accuracy. Also they suggested using techniques applied for Hierarchical Dirichlet 

Process HMM (HDP-HMM) and infinite HMMs. 

In some cases, even if the complex activity is decomposed, its sub activities are still very 

complicated. Thus, Sub activities cannot directly observable (hidden). For example, the activity 

“Prepare a dinner” can be divided into the activity “prepare drink” and the activity “cook” and 
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even sub-activities can be divided into smaller one. Therefore, each individually trained HMM 

model can be combined to build a global HMM to model the entire activity. Therefore, a 

hierarchical graphical models (e.g., Hierarchical HMM or Abstract HMM) seems to be more 

suitable for this situation (Lee & Cho, 2011). In general, we are able to separate the activity and 

establish an HMM model for each activity when activity is sequential. However, HMM is not 

appropriate for the situation if the activity is of the interleaved or collaborative type because the 

interlacement of activity is possibly ignored. In some situation, there are some sub-activities still 

not observable directly when the complex activity is disintegrated (Khan, Karg, Hoey, & Kulic, 

2012). For example, the activity “tidy the room” can be divided into two activities “mop the floor” 

and “take out the trash” and each of them also includes some sub-activities. Therefore, different 

activities trained using HMMs individually could be integrated to establish a global HMM and 

these hierarchical HMM are more suitable in these situations. To overcome these limitations, some 

variants of HMM have been proposed to recognise multi-resident activities (A. Benmansour et al., 

2015).  

3.5 Evaluation Method 

Generally speaking, our choice of HAR classification algorithm is supported by previous 

empirical evidence. Most studies use cross-validation or statistical testing to compare the 

performance of classifiers against specific datasets. Assuming that for the classification of n 

classes, we can organize all the classification results in a confusion matrix 𝑀𝑛×𝑛. In this matrix,

the element 𝑀𝑖𝑗 is the number of instances of class i but it is actually classified as class j.

We can get the following values from the confusion matrix in the binary classification problem: 

• True Positives (TP): The number of positive instances that were classified as positive.

• True Negatives (TN): The number of negative instances that were classified as negative.

• False Positives (FP): The number of negative instances that were classified as positive.

• False Negatives (FN): The number of positive instances that were classified as negative.

The accuracy is the indicator we often use to summarise classified performance, which is defined 

as: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

The precision which is positive predictive value. It is the ratio of correctly classified positive 
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instances to the total number of classified positive instances: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

The recall, also referred to true positive rate. The formula of recall value as follows:  

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

When we get the value of precision and recall, then combines them in a single value then get the 

F-measure: 

F −measure = 2·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

We calculate the precision, recall and f-measure for each activity separately and compute the 

average over of all classes according to the definition given in (van Kasteren et al., 2011a). For 

HAR datasets, activities are imbalance because there are many repetitive in every day. For 

example, sleeping, cooking and so on. Therefore, if the classification and recognition effect of the 

dominant class is better, the overall recognition performance will also be improved, but the recall 

rate is very low. In order to demonstrate the performance of each HAR’s different activities, we 

chose accuracy, recall, precision and F-measure at the same time. 

3.6 Statistical Test 

The process of data analysis is examining the data systematically with the aim of integrating 

useful information and evaluating experimental results. In general, when we collect sample data 

through observational studies or experiments, statistical inference becomes a powerful tool for 

researchers to evaluate results (Nigam,2018). The significance test plays a key role in experiments, 

allowing researchers to determine whether their data support or reject the null hypothesis, thus 

whether an alternative hypothesis is acceptable. Generally speaking, the inference method of 

statistical hypothesis test is as follows: first, we need to have a preliminary research hypothesis, 

calculate the test value of test statistic from the observation results, then calculate the p value, that 

is the probability of sampling test statistic under the null hypothesis. If and only if the p value is 

less than the threshold value (i.e. 0.05), the null hypothesis is rejected (Ryan, 1960). 

There are many types of statistical tests. If the experimental data are normally distributed, 

parametric tests should be used; otherwise, non-parametric tests should be used. Currently, when 

we want to test correlations, usually use Pearson correlation or chi-square to find correlations 
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among variables. When it comes to mean differences between variables, paired t-test, independent 

T-test, and ANOVA (Analysis of variance) are usually used. The independent sample t-test and 

ANOVA are used to compare the mean values of independent groups and to test whether the 

variances are equal. ANOVA usually used the ratio of the between group variance to the within 

variance to determine whether there was a significant statistical difference for 3 or more 

independent groups. The difference between ANOVA and T-test is T-test used to compare the 

means of two independent groups.  

Regardless of which statistical method we choose, we make inferences from sample data 

through hypothesis testing. Some key terms, such as null hypothesis H0 , usually have no 

difference between groups and no correlation between variables. Alternative hypothesis H1 is 

usually used to investigate the problem, depending on whether the test is one two tailed. The 

significance level is an important term, and when the hypothesis is true, we usually set the value 

to 5%, which means that invalid hypothesis is rejected. The last one is the p value, and when we 

calculate the p value using different probability distributions, the significant result is when p is 

less than 0.05 (Martyn Shuttleworth, 2008). 

3.7 Summary 

In this chapter, we first introduced the source and application of experimental data in detail and 

collated the information from two main datasets. Secondly, according to the situation of each data 

set, different methods were adopted to preprocess the data including the cleaning of raw data, data 

integration and data reduction. The last part is the classification part. We described different 

methods for the classification of behaviour recognition. These included Bayes Network, Naïve 

Bayes, SVM, Decision Tree, HMM and Random Forest. Each machine learning model was 

studied in depth and the experimental results were presented. 
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Chapter 4 Results and Discussion 

In this chapter, we mainly show the experimental results and introduce the specific 

model and implementations of each activity recognition datasets. Each model mentioned 

in Chapter 3 is applied to different datasets. We show the best state applied to different 

models in different datasets, that is, to give the highest accuracy. We also evaluate the 

experimental results in turn from the perspectives of datasets and models. The 

experimental configuration and data arrangement for the experiment will be described 

in this chapter. We discuss the findings and different methods of evaluating four 

experimental results. 
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4.1 Introduction 

Activity recognition is a process of recognising human behavior from data captured by different 

types of sensors. At present, it has been applied in many aspects, such as daily activity monitoring, 

medical care and assisted life of the elderly. Nowadays, there are lots of research on simple 

activity modeling. The research of complex activities has only begun in recent years. Based on 

pervasive computing and intelligent environment, we need to find appropriate models to solve 

data association problems. Appropriate sensors should be used to collect data so as to capture the 

activity details of all residents. Data association refers to the recognizing of residents who trigger 

sensors. It requires mapping the perceived data to the actual startup data. In multi-residential 

environment, if we can recognize who triggered the event, then we can track residents' activities 

effectively and accurately. 

In order to discover and recognize active learning, many algorithms of machine learning have 

been designed, improved and rewritten. There are many challenges in building models of human 

activity recognition, such as monitoring which residents trigger sensor events in a multi-resident 

environment (i.e., resident identification problems). 

In this Chapter, we will introduce the experiments and discuss their results in order to 

compare the various classification models described in the previous chapter for multi-resident 

HAR. We do experiments using each method and adjust the parameters to get the highest 

classification accuracy. 
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4.2 Experimental Environment  

• Hardware experimental environment: 

The experiment is run on a desktop with 4 core i5 CPU 3.0GHZ.  

• Software experimental environment: 

We used MATLAB and Weka for training and testing of the models. MATLAB used for modeling 

HMM and data pre-processing. For the other model we use Weka. The particular software version 

we used is shown below:  

Software name and version  Function  

MATLAB 2018b HMM modelling, data pre-processing 

WEKA 3.8.3 BN, NB, SVM, DT and RF modelling  

4.3 Experiment Results  

In our experiment, we used six different general machine learning methods to classify the activity 

recognition datasets. The optimum state of the model can be achieved by repeatedly adjusting 

parameters. There are statistical deviations in each dataset. Deviation is the tendency of statistical 

data to overestimate or underestimate parameters. Firstly, we adjusted the bias parameter before 

adjusting the model. In this experiment, we selected 5 bias parameters of 0, 0.25, 0.5, 0.75 and 1 

with spacing of 0.25. On the basis of each model, after adjusting each data set, the best 

performance parameters are selected as shown in Table 4.1.  

 Referring to Table 4.1, we can easily see the bias parameter and the model’s parameter after 

parameter tuning with Bayes Network. In the Bayes Network, we chose different algorithms 

which are TAN, K2, HillClimber and TabuSearch. When we use these four algorithms to process 

dataset separately, the accuracy is totally different. For dataset1, the optimum algorithm of Bayes 

Network is TAN. Without the change of bias parameter, the accuracy is lowest. Then, in the 

process of gradually increasing the bias parameter value, the results of different algorithms show 

slight changes. Among them, when the bias parameter is 0.5 and using TAN to classify dataset1, 

the accuracy is highest at 78.84%. When we set up the same condition with other three datasets, 

the accuracy is not the same with dataset1. So for dataset2, the optimum bias parameter is 0. The 

accuracy is lower than dataset1 and is 71.12%. As we can see, for all datasets, the optimum 
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algorithm is TAN and K2 which outperforms the other two algorithms overall. In each row, the 

best of the classifier results is displayed in Fig.4.1. Specifically, for each dataset, the different 

parameters of classifiers with the highest performance is highlighted. The experimental results 

show that when we use the same parameter estimation procedure to compare the TAN and K2 

algorithms, the classification accuracy is not affected greatly. But in the experimental process, 

TAN takes less time because of its low computational complexity.  

Model NameOfParameter RangeOfParameter BiasParameter Dataset 

Bayes 

Network 

searchAlgorithm TAN(-S BAYES) 0.5 1 

TAN(-S BAYES) 0 2 

TAN(-S BAYES) 0.75 3 

K2(-P 1 -S BAYES) 0.25 4 

Table 4.1 Parameter tuning result of Bayes Network 

Fig.4.1 Result of Bayes Network 

The second model is Naïve Bayes. Compared with other models, it is a simple and efficient 

machine learning classification model with high utilization rate. As a probability classifier, Naïve 

Bayes classification principle is maximum posteriori decision. In Bayesian environment, the 

classification model is suitable for high-dimensional situations. In many practical applications, 

even if the independence rules are not satisfied, NB algorithm can still show good performance, so 

it is a particularly popular classification method. 

Precision Recall F-Measure Accuracy

Dataset1 0.803 0.788 0.787 78.8422%

Dataset2 0.727 0.712 0.662 71.1908%

Dataset3 0.806 0.779 0.777 77.9197%

Dataset4 0.845 0.84 0.84 83.9795%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Bayes Network

Dataset1 Dataset2 Dataset3 Dataset4
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Model NameOfParameter RangeOfParameter BiasParameter Dataset 

Naïve 

Bayes 

useKernelEstimator FALSE 0.25 1 

useSupervisedDiscretization TRUE 

 TRUE 0 2 

FALSE 

FALSE 0.75 3 

FALSE 

FALSE 0.25 4 

TRUE 

Table 4.2 Parameter tuning result of Naïve Bayes 

 

Fig.4.2 Result of Naïve Bayes  

The result presented in Fig.4.1 and Fig.4.2 indicate that Bayes Network outperforms NB 

overall. The different models used in the experiment explain some of the disparities of 

experimental conclusion to some extent. We think that parameter estimation has significant effect. 

For Naïve Bayes and Bayes Network, we use parameter estimation to present different results. As 

expected, although parameter smoothing has little effect on the performance of NB, it does 

improve the performance of TAN algorithm to a certain extent because zero probability estimation 

may occur in more complex structures. 

 For the SVM model, we selected different kernel types; this is the Gaussian kernel which is 

special case of radial basis, linear, polynomial and sigmoid. All of the different kernel functions 

help map the data to a higher dimension where the data is separable. The best kernel type of these 

four datasets is a linear function. Linear kernel is usually used when data are linearly separable. 

Precision Recall F-Measure Accuracy

Dataset1 0.734 0.705 0.698 70.5421%

Dataset2 0.722 0.704 0.644 70.3835%

Dataset3 0.76 0.737 0.73 73.7448%

Dataset4 0.795 0.797 0.795 79.7193%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Naive Bayes

Dataset1 Dataset2 Dataset3 Dataset4
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In other words, the selected data can be separated by a single line. Linear kernels, as one of the 

commonly used function, are mostly used for specific datasets with a large number of features. 

On the other hand, the training time of linear kernel function is faster than any other kernel of 

SVM. From Fig.4.3 we know the best performance of SVM is dataset1 which is 88.57%. And for 

bias parameter, each dataset has different value. But for dataset4, the accuracy is almost the same 

with dataset1. 

Table 4.3 Parameter tuning result of SVM 

Fig.4.3 Result of SVM 

As a supervised learning method for inductive reasoning, decision tree model can be used to 

approximate the objective function representing discrete values and represent it as a tree structure. 

It classifies an instance of a dataset from the root node to the leaf node, and then each node 

processes the value of an instance attribute. So, using the basic ideas from Chapter 3, we adjust 

the minimum number of objects and get the different results by experimenting from this model. 

As we can see in Fig.4.4, the highest accuracy is 83.47%, which is dataset4. The biggest difference 

between the two algorithms is that SVM uses the kernel trick to turn a linearly non separable 

problem into a linearly separable one, while decision trees (and forests based on them, and boosted 

Precision Recall F-Measure Accuracy

Dataset1 0.891 0.886 0.885 88.5782%

Dataset2 0.722 0.712 0.66 71.1558%

Dataset3 0.856 0.838 0.84 83.8397%

Dataset4 0.884 0.884 0.884 88.4361%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SVM (Linear)

Dataset1 Dataset2 Dataset3 Dataset4

Model NameOfParameter RangeOfParameter BiasParameter Dataset 

SVM kernalType linear 0.5 1 

linear 0 2 

linear 0.75 3 

linear 1 4 
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trees, both to a lesser extent due to the nature of the ensemble algorithms) split the input space 

into hyper-rectangles according to the target. 

Model NameOfParameter RangeOfParameter BiasParameter Dataset 

Decision 

Tree 

(C4.5) 

 

minNumberObject 

2 0.5 1 

4 0 2 

2 0.75 3 

2 0.5 4 

Table 4.4 Parameter tuning result of Decision Tree  

 

 
Fig.4.4 Result of Decision Tree   

The advantages of Decision Trees are obvious. The first is the implicit performance of feature 

selection. And then discover non-linear relationships and interactions. In this way, the workload 

of data preparation and processing in the next decision tree will be reduced, and missing values 

can be handled reasonably without the influence of outliers. Finally, decision trees can generate 

rules to help researchers formalize knowledge. 

Precision Recall F-Measure Accuracy

Dataset1 0.809 0.773 0.773 77.3171%

Dataset2 0.734 0.714 0.663 71.3937%

Dataset3 0.755 0.721 0.721 72.1073%

Dataset4 0.863 0.835 0.834 83.4727%

0
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0.6
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DecisionTree(C4.5)

Dataset1 Dataset2 Dataset3 Dataset4
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Fig.4.5 Result of Random Forest  

 

 

Fig.4.6 Result of HMM 

For the RF algorithm, the only parameter to be tuned is the number of trees, which is adjusted 

by changing the number of trees from 1 to 100 and then determining the value that provides the 

best accuracy. It is an iterative process when I start at 1 and then 2, 3,4 etc. It was stopped once it 

was evident that peak performance was found at 20 and 18, 19, 21 and 22 gave worse accuracy 

than 20. Compared to the Naïve Bayes and Bayes Network, the HMM and Random Forest model 

gives better results in terms of precision, recall, f-measure and accuracy. The result can be 

interpreted as HMM model considering the temporal aspects of the data used in this experiment. 

The HMM model gives the best result followed by SVM with linear kernel, Naïve Bayes and 

Precision Recall F-Measure Accuracy

Dataset1 0.784 0.779 0.778 77.8946%

Dataset2 0.737 0.714 0.664 71.4244%

Dataset3 0.816 0.81 0.808 80.9789%

Dataset4 0.876 0.869 0.866 86.8767%
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0.2
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0.5
0.6
0.7
0.8
0.9
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RandomForest

Dataset1 Dataset2 Dataset3 Dataset4

Precision Recall F-Measure Accuracy

Dataset1 0.733 0.7 0.753 77.982%

Dataset2 0.701 0.733 0.686 70.770%

Dataset3 0.795 0.775 0.757 81.880%

Dataset4 0.843 0.869 0.856 86.950%

0
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0.2
0.3
0.4
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0.6
0.7
0.8
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1

HMM

Dataset1 Dataset2 Dataset3 Dataset4



73 

 

decision tree. It is shown a significant improvement for some models. 

When we select and extract different features, we can describe activities very well. Therefore, 

compared with the original data, the annotated data has a great improvement in classification 

accuracy. By comparing different classification models, we find that there are many factors 

affecting the performance of the model. For example, the types of sensors to be used, choosing 

different experimental schemes, the motivation of researching human activity recognition and the 

number and category of recognition activities, etc. By using different datasets to conduct 

experiments in different models, we discovered that the experimental results are influenced by 

the interaction between residents. Although the datasets contain two residents, it does not mean 

that they have cooperative activities all the time. Therefore, the interaction between residents is 

an indispensable factor in designing and adjusting the recognition model of multi-resident activity. 
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4.4 Boosting and Bagging  

Boosting is a powerful method to improve the accuracy of a given base (weak) classifier. The 

approach consists of two steps. First, the weak classifier is learned by using the original data in 

an iterative way and a processing method is generated. Then, the weak classifier model is 

recombined with specific cost functions to obtain a strong classifier to enhance the performance 

of the model. The process of iteration is the process of re-calculation of the lifting algorithm. 

Meanwhile, the output results of the previous model should be considered in combination with 

the hypothesis of each learning, and the data points with wrong classification should be given 

greater weight. Thus final hypothesis learned can be given as in (Breiman, 1996): 

F(x) = ∑ 𝛼𝑡
𝑇
𝑡=1 ℎ𝑡(𝑥) 

 Where 𝛼𝑡 represent the coefficient with the hypothesis ℎ𝑡 is combined, both αt and ℎ𝑡 are 

learned during the process of boosting procedure. 

 At present, some researchers have designed many boosting algorithms. In this experiment 

we use Adaptive boosting algorithm (abbreviated as AdaBoost). Since the adjusted subsequences 

used to build classifiers are beneficial to the instances that are misclassified, they are called 

adaptive.  

Bagging, also known as bootstrap aggregating. It is another simple meta-algorithm. Similar 

to boosting algorithm, multiple classifier models are combined to improve prediction accuracy. 

This algorithm is mostly used in Decision Tree method to train classifier by redistributing training 

set randomly. Therefore, the training set of each classifier is generated by randomly selecting n 

instances for replacement. N represents the size of the original training set. The final bagged 

estimator ℎ𝑏𝑎𝑔(. )  is the predicted expectation for each training hypothesis. If 𝒉𝒌(. )  is the 

hypothesis learned for training sample k, then it has: 

    ℎ𝑏𝑎𝑔(. ) = 
1

𝑀
∑ ℎ𝑘

𝑀
𝑘=1 (. ) (Bühlmann & Yu, 2000) 

The following figures show the result that each model after using bagging and boosting. 

Fig.4.6 and Fig.4.7 show the dataset1 bagging and boosting results. From the results we can see 

that, after using bagging, the accuracy has not improved greatly.  

From the results we can see that simple boosting approaches almost always produces better 

performance than just training a single classifier. For some of datasets the gains in performance 
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are quite significant. Such as dataset1 with Naïve Bayes, the result before boosting was 0.705, 

after boosting was 0.779. For dataset2 with Decision Tree, the result before boosting was 0.714, 

after boosting was 0.74. From dataset1 result, we can see after using boosting, the accuracy has 

improved greatly. But sometimes it produces worse result. However, most times it not only 

significantly outperforms using a single classifier, but significantly outperforms bagging. 

Boosting results are even more extreme. For certain datasets boosting produces a significant gain 

over any other method like dataset1. On other datasets like dataset 3, Boosting results that are 

even worse than using a single classifier. For both Boosting methods, it seems that when they 

work, they are extremely effective; on the other hand, when the Boosting methods fail they can 

often hinder performance. It is also interesting to note that both Boosting methods significantly 

outperform Bagging on the letter, segmentation, and vehicle domains, which suggests that their 

positive effects may be greatest when multiple classes are predicted.  

Bagging and Boosting reduce the variance of the single estimate because they combine 

estimates from different models. The result show that the model has higher stability. If the 

performance of a single model is low, then bagging will rarely yield a better bias. However, it 

optimizes the advantages of a single model and reduces defects, a composite model with a small 

error can be generated. In contrast, if a single model is too difficult, bagging is the best option. 

Enhancement does not prevent overfitting. In fact, the technology itself faces this problem. So, to 

some extent, bagging is more effective than boosting. 

Dataset1 

Precision Recall F-measure Accuracy 

BN Before 0.803 0.788 0.787 0.789 

After 0.732 0.713 0.703 0.713 

NB Before 0.734 0.705 0.698 0.705 

After 0.648 0.605 0.585 0.605 

SVM Before 0.891 0.886 0.885 0.886 

After 0.803 0.785 0.783 0.785 

DT Before 0.768 0.73 0.719 0.73 

After 0.7 0.62 0.643 0.703 

RF Before 0.784 0.779 0.778 0.778 

After 0.7 0.75 0.75 0.75 

HMM Before 0.733 0.762 0.753 0.78 

After 0.6 0.664 0.6 0.7 

BN Before 0.727 0.712 0.662 0.712 

After 0.71 0.72 0.6 0.7 
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Dataset2 

NB Before 0.722 0.704 0.644 0.704 

After 0.71 0.72 0.62 0.7 

SVM Before 0.722 0.712 0.66 0.712 

After 0.71 0.70 0.64 0.70 

DT Before 0.733 0.714 0.663 0.714 

After 0.71 0.70 0.62 0.70 

RF Before 0.727 0.712 0.662 0.712 

After 0.71 0.70 0.6 0.70 

HMM Before 0.701 0.733 0.686 0.701 

After 0.69 0.71 0.6 0.68 

Dataset3 

BN Before 0.806 0.779 0.777 0.779 

After 0.792 0.771 0.766 0.78 

NB Before 0.76 0.737 0.73 0.737 

After 0.75 0.728 0.72 0.728 

SVM Before 0.856 0.838 0.84 0.838 

After 0.864 0.848 0.849 0.85 

DT Before 0.755 0.721 0.721 0.721 

After 0.741 0.701 0.702 0.705 

RF Before 0.816 0.81 0.808 0.811 

After 0.81 0.81 0.79 0.8 

HMM Before 0.795 0.775 0.757 0.819 

After 0.78 0.77 0.754 0.785 

Dataset4 

BN Before 0.845 0.84 0.84 0.84 

After 0.832 0.83 0.83 0.83 

NB Before 0.795 0.797 0.795 0.797 

After 0.788 0.785 0.788 0.788 

SVM Before 0.884 0.884 0.884 0.884 

After 0.88 0.88 0.88 0.88 

DT Before 0.863 0.835 0.834 0.834 

After 0.84 0.82 0.82 0.82 

RF Before 0.876 0.869 0.866 0.869 

After 0.77 0.75 0.73 0.79 

HMM Before 0.843 0.869 0.856 0.87 

After 0.82 0.84 0.83 0.85 

Table 4.5 Summary of bagging results 
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Dataset1 

  Precision Recall F-measure Accuracy 

BN Before 0.803 0.788 0.787 0.789 

After 0.81 0.778 0.785 0.778 

NB Before 0.734 0.705 0.698 0.705 

After 0.782 0.779 0.779 0.779 

SVM Before 0.891 0.886 0.885 0.886 

After 0.892 0.885 0.885 0.886 

DT Before 0.768 0.73 0.719 0.73 

After 0.7 0.62 0.643 0.703 

RF  Before 0.784 0.779 0.778 0.778 

After 0.79 0.78 0.78 0.78 

HMM Before 0.733 0.762 0.753 0.78 

After 0.75 0.76 0.75 0.78 

 

 

 

 

 

Dataset2 

BN  Before 0.727 0.712 0.662 0.712 

After 0.72 0.71 0.65 0.71 

NB  Before 0.722 0.704 0.644 0.704 

After 0.73 0.71 0.64 0.71 

SVM Before 0.722 0.712 0.66 0.712 

After 0.74 0.73 0.68 0.73 

DT Before 0.733 0.714 0.663 0.714 

After 0.75 0.72 0.67 0.74 

RF  Before 0.727 0.712 0.662 0.712 

After 0.73 0.72 0.65 0.72 

HMM Before 0.701 0.733 0.686 0.701 

After 0.73 0.75 0.7 0.73 

 

 

 

 

 

Dataset3 

BN  Before 0.806 0.779 0.777 0.779 

 After 0.805 0.77 0.77 0.76 

NB  Before 0.76 0.737 0.73 0.737 

 After 0.73 0.72 0.70 0.72 

SVM Before 0.856 0.838 0.84 0.838 

 After 0.879 0.868 0.869 0.867 

DT Before 0.755 0.721 0.721 0.721 

 After 0.815 0.785 0.787 0.785 

RF  Before 0.816 0.81 0.808 0.811 

 After 0.83 0.83 0.81 0.83 

HMM Before 0.795 0.775 0.757 0.819 

 After 0.85 0.83 0.81 0.83 

 

 

 

 

 

Dataset4 

BN  Before 0.845 0.84 0.84 0.84 

 After 0.856 0.85 0.85 0.85 

NB  Before 0.795 0.797 0.795 0.797 

 After 0.85 0.85 0.84 0.85 

SVM Before 0.884 0.884 0.884 0.884 

 After 0.895 0.895 0.895 0.895 

DT Before 0.863 0.835 0.834 0.834 
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 After 0.88 0.85 0.85 0.87 

RF  Before 0.876 0.869 0.866 0.869 

 After 0.89 0.87 0.87 0.87 

HMM Before 0.843 0.869 0.856 0.87 

 After 0.87 0.89 0.88 0.88 

Table 4.6 Summary of Boosting result 

4.5 Discussion   

In order to evaluate the performance of the BN, NB, SVM, DT, HMM and RF classifiers in human 

activity recognition, we conducted 10-fold cross-validation on four datasets. Metrics, such as 

recall, precision and the F-measure were used to evaluate the performance of the classification.  

Dataset Model F-Measure (%) Accuracy (%) 

 

 

Dataset1 

BN 78.77 78.84 

NB 69.85 70.54 

SVM (Linear) 88.52 88.57 

SVM (radial basis) 50.44 51.34 

SVM (polynomial) 50.43 51.40 

SVM (sigmoid) 50.21 51.2 

DT 77.34 77.31 

RF 55.61 60.24 

HMM 75.33 77.98 

 

 

Dataset2 

BN 66.23 71.19 

NB 64.44 70.38 

SVM (Linear) 66.61 71.36 

SVM (radial basis) 65.8 71.1 

SVM (polynomial) 46.4 55.61 

SVM (sigmoid) 65.4 70.1 

DT 66.33 71.16 

RF 66.41 71.42 

HMM 68.61 70.77 

 

 

Dataset3 

BN 77.77 77.92 

NB 73 73.75 

SVM (Linear) 74.82 74.57 

SVM (radial basis) 50.44 51.29 

SVM (polynomial) 50.53 51.43 

SVM (sigmoid) 50.45 51.53 

DT 72.11 72.11 

RF 80.8 80.98 

HMM 75.77 81.88 
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Dataset4 

BN 84.1 83.98 

NB 79.51 79.72 

SVM (Linear) 88.41 88.44 

SVM (radial basis) 60.34 61.23 

SVM (polynomial) 60.45 61.45 

SVM (sigmoid) 60.24 61.32 

DT 83.41 83.47 

RF 86.61 86.88 

HMM 85.67 86.95 

Table 4.7 Classification result for each dataset 

All the experiments results are shown in Table 4.7. It is given for each of the proposed models. 

We cycled through all training sequences using 10-fold cross validation and reported the mean 

value of F-measure and accuracy. In fact, considering all the metrics, linear SVM performs better 

result than other models, especially in dataset4, its accuracy is as high as 88%. By comparing the 

variance of the accuracy of each model, we can know the variance value of the Random Forest is 

the largest, indicating that its data fluctuation is also the largest. The performance of the Random 

Forest in these four datasets is also the most unstable. On the contrary, Naïve Bayes performs 

better than other models and performs more stably when classifying four data sets which is 

expected. Moreover, when looking at the accuracies separated for datasets, it is clear that dataset4 

has a good performance compared with other datasets. 

By using the data collected by environmental sensors, the linear SVM classification 

algorithm was used to realise the accurate classification of ADL activities and the accuracy rate 

is 88.57%. Compared with other general classification models, this system is more effective in 

linear kernel classifier. The result can be applied to actual deployment, as there is no need to grasp 

the real-time ADL instances in the training process. In dataset activities, we still need to consider 

the factors of overlapping. For example, the resident is cooking while the other resident is bathing. 

This leads to a low sensitivity of the model. In fact, for these overlapping activities, the same type 

of sensor is triggered, and the model is processed according to the type of sensor triggered without 

considering the time characteristics. Naïve Bayes is greatly affected by this factor. In the process 

of classifying, the model classifies each slot separately without considering the duration of the 

activity. The HMM model will highlight its advantages, especially when dealing with Dataset3 

with an accuracy rate of 88.44% accuracy. 

As one of the simplest Bayesian classification methods, Naïve Bayes has stable classification 
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efficiency. Generally speaking, it is suitable for multi-classification tasks with incremental 

learning methods. One prominent feature is that it is the sensitive to some redundant or 

uncorrelated features, so the model performs better when the correlations between properties are 

small. Han et al. (Yuan, Wang, Meng, Yan, & Xia, 2019) rationally applied the attributes of Naïve 

Bayes model with the same priority characteristics and proposed an adaptive multi-layer activity 

recognition framework, which achieved the real-time recognition of 15 kinds of activities. 

Therefore, on the other hand, Naïve Bayes model is still a popular classification algorithm due to 

its simple and fast modeling process. 

Support Vector Machine (SVM) which has the worst classification accuracy among the three 

algorithms, and the fastest training speed, has three advantages. Firstly, SVM effectively maps 

non-linear data sets to high-dimensional vectors by using inner product and kernel function, so 

that it can be separable in high-dimensional linearity. Secondly, for geometric intervals, SVM 

simplifies the computational complexity by selecting support vectors, thus avoiding dimension 

disaster. Thirdly, when choosing the kernel function, RBF is regarded as a kind of neural network, 

which can better deal with the errors. On the other hand, the disadvantage of Support Vector 

Machine (SVM) is that when faced with large data sets, it has to map all data sets to high 

dimensions, which will take up a lot of memory and computing time to hide Markov model. The 

results of running speed and classification accuracy are between the two. The model based on 

Markov chain has two advantages. First, the Hidden Markov Model regards data sets as 

continuous actions and converts them into a sequence of special observation states, which makes 

these actions look more significant. No matter how large the quantity dimension of input is, the 

Hidden Markov Model has the ability to generate a sequence after simple pretreatment. This 

advantage is not found in the other two methods. The disadvantage of this model is that it may 

not converge to a real optimal parameter and thus lead to over-fitting. However, this is a problem 

common to many machine learning algorithms. In addition, one of the characteristics of this 

model is that the future nodes only depend on the present and have nothing to do with the past. 

Because human daily activities are a continuous movement, some mistakes may be avoided when 

we learn the past and present states simultaneously.  
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4.6 Statistical Analysis   

In these experiments, we applied different data classification methods to different datasets, 

and assessed how varying the classification altered the performance of motion recognition. All 

approaches increased the performance of multi-resident AR, but the degree of improvement 

depended on the dataset.  

 

Model N Mean 

Square 

df Sig. 

Bayes Network 4 0.044 3 0.345 

Naïve Bayes 4 0.003 3 0.440 

SVM (linear) 

DecisionTree 

RandomForest 

HMM 

4 

4 

4 

4 

0.344 

0.554 

0.452 

0.003 

2 

4 

3 

3 

0.011 

0.401 

0.553 

0.023 

Table 4.8 Result of statistical test 

To verify that the dataset also affects the classification results, we compared the results of 

the six classification methods by the ANOVA parametric test. The null hypothesis is that there are 

no differences between each method. In our experiment, if the calculated probability was lower 

than 0.05, the null hypothesis was rejected, meaning that at least two of the variables were 

significantly different. Conversely, the null hypothesis was accepted if the probability exceeded 

0.05. The results are shown in Table 4.8. DF means "the degrees of freedom in the source." Sig. 

means "the P-value." The Sig values of the six methods in Table 4.8 were 0.345, 0.44, 0.011, 

0.401, 0.553 and 0.023. As the values of the SVM (linear) and HMM were below 0.05, the null 

hypothesis was rejected, implying that the degrees of affected in these classification methods 

varied among the datasets. Meanwhile, the Sig value of other four methods was greater than 0.05, 

so we accepted the null hypothesis, namely the classification results of approaches do not depend 

on the datasets.  
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4.7 Summary  

This chapter mainly discusses the experimental results and analysis. The main goal is to evaluate 

different activity recognition models by different metrics methods. Finally, the most optimal 

classifier is found in six classification models. In the experiment, we used 10-fold cross validation. 

The results show that linear SVM and HMM are more accurate than other models. When we 

analyses the experimental results from the perspective of statistical, we find that the statistical 

values of linear SVM and HMM are less than 0.05, which means that these classification methods 

have different degrees of impact on the datasets. 
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Chapter 5 Conclusion and Future Work 

In this thesis, six different general classification machine learning models are evaluated 

by studying and analysing the classification problem of multi-resident activity recognition 

based on using sensors. In this chapter, we first summarise the contributions of this thesis 

and also answer the research questions in detail. Then, based on the current research, 

future work is proposed. 
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5.1 Summary of Contribution 

Activity recognition has made great advances in recent years. Actually, in the last decade, much 

more attention has been paid to activity modelling based on sensor data and activity recognition. 

Because of the emergence of ubiquitous sensing technology, activity-aware applications have 

been introduced to the market, and anyone can buy them through the Internet. The combination 

of different types of sensors in machine learning can map our physical world into a digital world. 

In Chapter 1 we mainly discussed the motivation and the research question of this thesis.  

In the related work of Chapter 2, we summarise around 70 research papers on activity 

recognition. Meanwhile, in order to establish the theoretical basis for the next stage of research, 

the effects of different classification models in this field are summarised. Among them, we have 

reviewed about 20 papers on activity recognition, including many overviews. Through sorting 

and analysis, we can not only understand the conceptual framework, research methods, 

development stages and trends of activity recognition at the present stage, but also grasp the 

challenges and limitations encountered in the development process. In this process, we analysed 

the existing experimental results and then applied them to our research. Next, we focused on 

research about different classification models in multi-resident activity recognition. Nearly 40 

articles were relevant. In the process, we found that most of the studies adopted more than one 

classification model. The literature review provides arguments for the research and also explores 

new research methods and approaches used in our subsequent research. In real life, the number 

of residents living in the environment increases, as does the complexity of daily life. Multi-

resident activities are often cooperative. 

In Chapter 3, we discussed the processes of activity recognition. We focused on the data 

acquisition based on environmental sensors, then preprocessing the data, in order to improve the 

training model accuracy, we remove some noise data, and add a new label for sensor values and 

activity. Next segmenting all the data and extracting important features and, finally, classifying. 

Explained the six experimental methodology in detail. We discussed the state-of-art 

computational models used for classifying activities. In order to find the optimal model, we chose 

different evaluation criteria to measure it.   

In Chapter 4, we tested the performance of the Bayes Network, Naïve Bayes, SVM (different 

kernel), Decision Tree, Random Forest and HMM classification methods on public datasets. The 
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internal parameters of these methods have been optimised using the training data. Afterwards, the 

performance of the trained methods has been assessed using that test data. The results show that 

the linear SVM has high accuracy in each dataset, which indicates that the classification situation 

is ideal. After adjusting the different parameters, the final accuracy rate achieved is 88.57%. 

Secondly, the performance of HMM in each model is only inferior to that of linear SVM. Some 

activities' characteristics have a significant impact on the activity recognition performance. 

HMMs are robust to the noise in sensor readings and to the uncertainty while performing activities. 

Moreover, the HMM is capable of considering the sequential nature of activities. 

The overall contribution of this thesis to the research is to explore the classification status of 

the general machine learning models in multi-resident activity recognition. We have integrated 6 

general models in the application of this area. By comparing different models on different datasets, 

we conclude that the selection of the model will influence the classifying of results. Through 

statistical analysis, we deduce that the classification of linear SVM and HMM has significant 

differences in different datasets.  

5.2 Limitation and Future Work 

Throughout the whole research, the first limitation is about data. Due to the novelty of the field 

of multi-resident activity recognition, the data used in our experiments is binary sensor data and 

represent as a sequence of event. So the sensor state is changeable. From the current research, we 

know that the experimental datasets need a lot of human and financial resources to collect, most 

of researches prefer to use public datasets specially with more than two people did different types 

of activities datasets. So we didn’t train as many different dataset as possible to extend the 

accuracy of models. It is still difficult to compare the multi-resident activity recognition models 

quantitatively.  

Another limitation is about the improvement and perfection for selection of classification 

algorithms. In the data mining area, selecting the correct data representation or feature is more 

important than selecting the correct technology. So we need spend more time to optimise the 

model structure. Investigate the best feature and classification techniques combination to solve 

the problem.  

In the field of multi-resident activity recognition, there are many open issues with respect to 
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sensory data pre-processing steps such as discretisation and feature representation.  We plan to 

experiment with different lengths of time interval used for discretisation (e.g. 10 seconds, 20 

seconds,...60 seconds). This would allow us to suggest a feature representation or to experiment 

with existing ones such as changepoint and last-fired representation. Transforming sensor data to 

a different feature representation sometimes does improve the recognition performance of a model 

significantly. 

The last aspect we will investigate is real-word multi-resident activities in a more complex 

scenario because the available data hitherto used is rather scripted and does not reflect the real-

world setting. Specifically, we plan to evaluate the proposed models on another set of data 

collected in real world situations. The dataset we used in our experiment is labeled as the data 

association variables are given. Thus, the performance of an activity recogniser is independent to 

that of a data associator. This allows us to compare the performance of activity recognition models 

in an objective manner. We can develop an approach which is based on contextual information 

(i.e. activity performed by each resident, properties of the activity performed at time, who trigged 

active sensor, locations of active sensors in the living space, etc.). Then we could apply our 

proposed research model. However, the activity recognition performance of each model would be 

immediately affected by the performance of the data association recogniser (i.e. when the sensor 

data is incorrectly associated with the resident). 

In this study, we mainly focus on the application of general classification models of machine 

learning in multi-resident activity recognition. In this process, we also found that deep learning is 

also involved in the field of multi-resident activity recognition. But up to now, there are few 

researches on the ARAS and CASAS datasets. With the continuous development of deep learning, 

we can use different deep learning models for comparison in the future work. 



87 

 

References 

Al-Nawashi, M., Al-Hazaimeh, O. M., & Saraee, M. (2017). A novel framework for intelligent 

surveillance system based on abnormal human activity detection in academic 

environments. Neural Computing and Applications, 28(1), 565-572. 

Alaa, A., Vaidehi, M., Doreen, B., hnstedt, & Ralf, S. (2016). Activity Recognition in Multi-User 

Environments Using Techniques of Multi-label Classification Proceedings of the 6th 

International Conference on the Internet of Things %@ 978-1-4503-4814-0 (pp. 15-23). 

Stuttgart, Germany: ACM. 

Alam, M. A. U., Roy, N., Misra, A., & Taylor, J. (2016). CACE: Exploiting Behavioral 

Interactions for Improved Activity Recognition in Multi-Inhabitant Smart Homes. 

Proceedings 2016 Ieee 36th International Conference on Distributed Computing Systems 

Icdcs 2016, 539-548. https://doi.org/10.1109/Icdcs.2016.61 

Alemdar, H., & Ersoy, C. (2017). Multi-resident activity tracking and recognition in smart 

environments. Journal Of Ambient Intelligence And Humanized Computing, 8(4), 513-

529. https://doi.org/10.1007/s12652-016-0440-x 

Álvarez de la Concepción, M. Á., Soria Morillo, L. M., Álvarez García, J. A., & González-Abril, 

L. (2017). Mobile activity recognition and fall detection system for elderly people using 

Ameva algorithm. Pervasive and Mobile Computing, 34, 3-13. 

https://doi.org/https://doi.org/10.1016/j.pmcj.2016.05.002 

Amiribesheli, M., Benmansour, A., & Bouchachia, A. (2015). A review of smart homes in 

healthcare. Journal Of Ambient Intelligence And Humanized Computing, 6(4), 495-517. 

https://doi.org/10.1007/s12652-015-0270-2 

Anthony Fleury, M. V., Norbert Noury. (2010). SVM-based multimodal classification of activities 

of daily living in health smart homes: sensors, algorithms, and first experimental results. 

IEEE Transactions on Information Technology in Biomedicine - Special section on 

affective and pervasive computing for healthcare 14(2), 251. 

Anyanwu, M. N., & Shiva, S. G. (2009). Comparative analysis of serial decision tree classification 

algorithms. International Journal of Computer Science and Security, 3(3), 230-240. 

ASMA BENMANSOUR, A. B., MOHAMMED FEHAM. (2016). Multioccupant Activity 

Recognition in Pervasive Smart Home Environments. ACM Computing Surveys (CSUR) 

48(3), 0360-0300. 

Barnan Das, N. C. K., Diane J. Cook. (2013). Handling Class Overlap and Imbalance to Detect 

Prompt Situations in Smart Homes. presented at the meeting of the 2013 IEEE 13th 

International Conference on Data Mining Workshops, Dallas, TX, USA. 

Benmansour, A., Bouchachia, A., & Feham, M. (2015). Multioccupant Activity Recognition in 

Pervasive Smart Home Environments. Acm Computing Surveys, 48(3). 

https://doi.org/Artn 34 

10.1145/2835372 

Benmansour, A., Bouchachia, A., & Feham, M. (2017). Modeling interaction in multi-resident 

activities. Neurocomputing, 230(Supplement C), 133-142. 

https://doi.org/https://doi.org/10.1016/j.neucom.2016.05.110 

Bouchachia, M. A. A. B. A. (2015). A review of smart homes in healthcare. J Ambient Intell 

Human Comput, 22. 

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. 

Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes: Jason Brownlee. 

Bühlmann, P. L., & Yu, B. (2000). Explaining baggingSeminar für Statistik, Eidgenössische 

https://doi.org/10.1109/Icdcs.2016.61
https://doi.org/10.1007/s12652-016-0440-x
https://doi.org/https:/doi.org/10.1016/j.pmcj.2016.05.002
https://doi.org/10.1007/s12652-015-0270-2
https://doi.org/Artn
https://doi.org/https:/doi.org/10.1016/j.neucom.2016.05.110


88 

 

Technische Hochschule (ETH). Symposium conducted at the meeting of the Research 

report/Seminar für Statistik, Eidgenössische Technische Hochschule Zürich 

Caldeira, J. M., Rodrigues, J. J., & Lorenz, P. (2012). Toward ubiquitous mobility solutions for 

body sensor networks on healthcare. IEEE Communications Magazine, 50(5), 108-115. 

Carolin Strobl, J. M., Gerhard Tutz. (2009). An Introduction to Recursive Partitioning: Rationale, 

Application and Characteristics of Classification and Regression Trees, Bagging and 

Random Forests. Psychol Methods., 323-348. 

Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., & Yu, Z. (2012). Sensor-based activity recognition. 

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 

42(6), 790-808. 

Chen, R., & Tong, Y. (2014). A two-stage method for solving multi-resident activity recognition 

in smart environments. Entropy, 16(4), 2184-2203. 

Chiu, M.-H., Yu, Y.-R., Liaw, H. L., & Chun-Hao, L. (2016). The use of facial micro-expression 

state and Tree-Forest Model for predicting conceptual-conflict based conceptual change. 

Chapter Title & Authors Page, 184. 

Cook, D. J. (2010). Learning setting-generalized activity models for smart spaces. IEEE 

intelligent systems, 2010(99), 1. 

Cook, D. J., & Krishnan, N. C. (2015). Activity learning: discovering, recognizing, and predicting 

human behavior from sensor data: John Wiley & Sons. 

Cook, N. R. A. M. D. (2016). Ambient and smartphone sensor assisted ADL recognition in multi-

inhabitant smart environments. J Ambient Intell Human Comput 7, 19. 

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic 

networks from data. Machine learning, 9(4), 309-347. 

Crandall, A. S., & Cook, D. (2008). Attributing events to individuals in multi-inhabitant 

environments. 

Damla Arifoglu, A. B. (2017). Activity Recognition and Abnormal Behaviour Detection with 

Recurrent Neural Networks. Procedia Computer Science 110, 7. 

Daniel Wilson, C. A. (2005). Simultaneous Tracking & Activity Recognition (STAR) Using Many 

Anonymous, Binary Sensors. Pervasive Computing, 3468, 62-79. 

Daniele, R., Timo, S., Gabriele, C., & Heiner, S. (2016). Unsupervised recognition of interleaved 

activities of daily living through ontological and probabilistic reasoning Proceedings of 

the 2016 ACM International Joint Conference on Pervasive and Ubiquitous 

Computing %@ 978-1-4503-4461-6 (pp. 1-12). Heidelberg, Germany: ACM. 

Daniele Riboni, L. P., Laura Radaelli, Claudio Bettini. (2011). Is ontology-based activity 

recognition really effective? presented at the meeting of the 2011 IEEE International 

Conference on Pervasive Computing and Communications Workshops (PERCOM 

Workshops), Seattle, WA, USA. 

Daniele Riboni, T. S., Gabriele Civitarese, Heiner Stuckenschmidt. (2016). Unsupervised 

recognition of interleaved activities of daily living through ontological and probabilistic 

reasoning. ACM International Joint Conference on Pervasive and Ubiquitous Computing, 

12. 

de la Concepción, M. Á. Á., Morillo, L. M. S., García, J. A. Á., & González-Abril, L. (2017). 

Mobile activity recognition and fall detection system for elderly people using Ameva 

algorithm. Pervasive and Mobile Computing, 34, 3-13. 

Diane Cook, N. K., Parisa Rashidi. (2013). Activity Discovery and Activity Recognition: A New 

Partnership. IEEE Trans Cybern, 8. 



89 

 

Eddy, S. R. (1996). Hidden Markov models. Current Opinion in Structural Biology, 6(3), 361-

365. https://doi.org/https://doi.org/10.1016/S0959-440X(96)80056-X 

Emi, I. A., & Stankovic, J. A. (2015). SARRIMA: smart ADL recognizer and resident identifier 

in multi-resident accommodationsACM. Symposium conducted at the meeting of the 

Proceedings of the conference on Wireless Health 

Emi, I. A., & Stankovic, J. A. (2015). SARRIMA: smart ADL recognizer and resident identifier in 

multi-resident accommodations.  Retrieved from 

http://doi.acm.org/10.1145/2811780.2811916 https://doi.org/10.1145/2811780.2811916 

Emmanuel Munguia Tapia, S. S. I., Kent Larson. (2004). Activity Recognition in the Home Using 

Simple and Ubiquitous Sensors. International Conference on Pervasive Computing, 17. 

Eunju Kim, A. H., Diane J. Cook. (2010). Human Activity Recognition and Pattern Discovery. 

IEEE Pervasive Computing 2010, 5. 

Fahad, L. G., Tahir, S. F., & Rajarajan, M. (2014). Activity recognition in smart homes using 

clustering based classificationIEEE. Symposium conducted at the meeting of the 2014 

22nd International Conference on Pattern Recognition 

Fahad, L. G., Tahir, S. F., & Rajarajan, M. (2015). Feature selection and data balancing for activity 

recognition in smart homesIEEE. Symposium conducted at the meeting of the 2015 IEEE 

International Conference on Communications (ICC) 

Forkan, A. R. M., Khalil, I., Tari, Z., Foufou, S., & Bouras, A. (2015). A context-aware approach 

for long-term behavioural change detection and abnormality prediction in ambient 

assisted living. Pattern Recognition, 48(3), 628-641. 

https://doi.org/10.1016/j.patcog.2014.07.007 

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine 

learning, 29(2-3), 131-163. 

Galván-Tejada, C. E., Galván-Tejada, J. I., Celaya-Padilla, J. M., Delgado-Contreras, J. R., 

Magallanes-Quintanar, R., Martinez-Fierro, M. L., . . . Gamboa-Rosales, H. (2016). An 

Analysis of Audio Features to Develop a Human Activity Recognition Model Using 

Genetic Algorithms, Random Forests, and Neural Networks. Mobile Information Systems, 

2016. https://doi.org/10.1155/2016/1784101 

Garcia-Ceja, E., & Brena, R. F. (2018). An improved three-stage classifier for activity recognition. 

International Journal of Pattern Recognition and Artificial Intelligence, 32(01), 1860003. 

Garcia-Ceja, E., Galván-Tejada, C. E., & Brena, R. (2018a). Multi-view stacking for activity 

recognition with sound and accelerometer data. Information Fusion, 40(Supplement C), 

45-56. https://doi.org/https://doi.org/10.1016/j.inffus.2017.06.004 

Garcia-Ceja, E., Galván-Tejada, C. E., & Brena, R. (2018b). Multi-view stacking for activity 

recognition with sound and accelerometer data. Information Fusion, 40, 45-56. 

https://doi.org/https://doi.org/10.1016/j.inffus.2017.06.004 

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining: Springer. 

Hadi Tabatabaee Malazi, M. D. (2018). Combining emerging patterns with random forest for 

complex activity recognition in smart homes. Applied Intelligence, 48(2), 15. 

HaiderJanjua，RimHelaoui, D. C. G. Z. (2016). SmartFABER: Recognizing fine-grained 

abnormal behaviors for early detection of mild cognitive impairment. Artificial 

Intelligence in Medicine, 67, 17. 

Hand, D. J. (2006). Data Mining. Encyclopedia of Environmetrics, 2. 

Hande Alemdar, H. E., Ozlem Durmaz Incel, Cem Ersoy. (2013). ARAS human activity datasets 

in multiple homes with multiple residents. presented at the meeting of the 2013 7th 

https://doi.org/https:/doi.org/10.1016/S0959-440X(96)80056-X
http://doi.acm.org/10.1145/2811780.2811916
https://doi.org/10.1145/2811780.2811916
https://doi.org/10.1016/j.patcog.2014.07.007
https://doi.org/10.1155/2016/1784101
https://doi.org/https:/doi.org/10.1016/j.inffus.2017.06.004
https://doi.org/https:/doi.org/10.1016/j.inffus.2017.06.004


90 

International Conference on Pervasive Computing Technologies for Healthcare and 

Workshops, Venice, Italy. 

Hande Alemdar，Cem Ersoy. (2017). Multi‑resident activity tracking and recognition in smart 

environments. J Ambient Intell Human Comput 8, 16. 

Hsu, K.-C., Chiang, Y.-T., Lin, G.-Y., Lu, C.-H., Hsu, J. Y.-J., & Fu, L.-C. (2010). Strategies for 

inference mechanism of conditional random fields for multiple-resident activity 

recognition in a smart homeSpringer. Symposium conducted at the meeting of the 

International Conference on Industrial, Engineering and Other Applications of Applied 

Intelligent Systems 

Huang, X., & Dai, M. (2017). Indoor Device-Free Activity Recognition Based on Radio Signal. 

IEEE Trans. Vehicular Technology, 66(6), 5316-5329. 

https://doi.org/10.1109/TVT.2016.2616883 

Jeremie Saives, C. P., Gregory Faraut. (2015). Activity Discovery and Detection of Behavioral 

Deviations of an Inhabitant From Binary Sensors.  IEEE Transactions on Automation 

Science and Engineering 12, 13. 

Jing Zhao, X. X., Xin Xu, Shiliang Sun. (2017). Multi-view learning overview: Recent progress 

and new challenges. Information Fusion, 38, 11. 

Kashimoto, Y., Fujiwara, M., Fujimoto, M., Suwa, H., Arakawa, Y., & Yasumoto, K. (2017a). 

ALPAS: Analog-PIR-sensor-based activity recognition system in smarthomeIEEE. 

Symposium conducted at the meeting of the 2017 IEEE 31st International Conference on 

Advanced Information Networking and Applications (AINA) 

Kashimoto, Y., Fujiwara, M., Fujimoto, M., Suwa, H., Arakawa, Y., & Yasumoto, K. (2017b). 

ALPAS: Analog-PIR-Sensor-Based Activity Recognition System in Smarthome. 

Retrieved from https://doi.org/10.1109/AINA.2017.33 

https://doi.org/10.1109/AINA.2017.33 

Khan, S. S., Karg, M. E., Hoey, J., & Kulic, D. (2012). Towards the detection of unusual temporal 

events during activities using HMMs.  Retrieved from 

http://doi.acm.org/10.1145/2370216.2370444 https://doi.org/10.1145/2370216.2370444 

Korhonen, I., Parkka, J., & Van Gils, M. (2003). Health monitoring in the home of the future. 

IEEE Engineering in medicine and biology magazine, 22(3), 66-73. 

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data preprocessing for supervised leaning. 

International Journal of Computer Science, 1(2), 111-117. 

Kwon, M.-C., & Choi, S. (2018). Recognition of Daily Human Activity Using an Artificial Neural 

Network and Smartwatch. Wireless Communications and Mobile Computing, 2018. 

Kwon, O., Shim, J. M., & Lim, G. (2012). Single activity sensor-based ensemble analysis for 

health monitoring of solitary elderly people. Expert Systems with Applications, 39(5), 

5774-5783. 

Lara, O. D., & Labrador, M. A. (2013). A Survey on Human Activity Recognition using Wearable 

Sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192-1209. 

https://doi.org/10.1109/SURV.2012.110112.00192 

Lee, Y.-S., & Cho, S.-B. (2011). Activity recognition using hierarchical hidden markov models 

on a smartphone with 3D accelerometerSpringer. Symposium conducted at the meeting 

of the International conference on hybrid artificial intelligence systems 

Lior Rokach, O. M. (2005). Decision Trees. Data Mining and Knowledge Discovery Handbook, 

27. 

Liu, Y., Ouyang, D., Liu, Y., & Chen, R. (2017). A novel approach based on time cluster for 

https://doi.org/10.1109/TVT.2016.2616883
https://doi.org/10.1109/AINA.2017.33
https://doi.org/10.1109/AINA.2017.33
http://doi.acm.org/10.1145/2370216.2370444
https://doi.org/10.1145/2370216.2370444
https://doi.org/10.1109/SURV.2012.110112.00192


91 

 

activity recognition of daily living in smart homes. Symmetry, 9(10), 212. 

Malazi, H. T., & Davari, M. (2017). Combining emerging patterns with random forest for complex 

activity recognition in smart homes. Appl Intell. https://doi.org/10.1007/s10489-017-

0976-2 

Markus Prossegger, H. B. (2014). Multi-resident Activity Recognition Using Incremental 

Decision Trees. Adaptive and Intelligent Systems: Third International Conference, ICAIS 

9. 

Martyn Shuttleworth, L. T. W. (2008). Significance Test. Retrieved from 

https://explorable.com/significance-test 

Melo, N., & Lee, J. (2018). Environment aware adl recognition system based on decision tree and 

activity frame. Paladyn, Journal of Behavioral Robotics, 9(1), 155-167. 

Mitja Luštrek, B. K. (2008). Fall Detection and Activity Recognition with Machine Learning. 

Informatica, 7. 

Nait Aicha, A., Englebienne, G., & Kröse, B. (2013). How lonely is your grandma?: detecting the 

visits to assisted living elderly from wireless sensor network dataACM. Symposium 

conducted at the meeting of the Proceedings of the 2013 ACM conference on Pervasive 

and ubiquitous computing adjunct publication 

Nef, T., Urwyler, P., Büchler, M., Tarnanas, I., Stucki, R., Cazzoli, D., . . . Mosimann, U. (2015). 

Evaluation of three state-of-the-art classifiers for recognition of activities of daily living 

from smart home ambient data. Sensors, 15(5), 11725-11740. 

Ni, Q., García Hernando, A., & de la Cruz, I. (2015). The elderly’s independent living in smart 

homes: A characterization of activities and sensing infrastructure survey to facilitate 

services development. Sensors, 15(5), 11312-11362. 

Nigam, V. (2018). Statistical Tests — When to use Which? Retrieved from 

https://towardsdatascience.com/statistical-tests-when-to-use-which-704557554740 

Nishkam Ravi, N. D., Preetham Mysore, Michael L. Littman. (2010). Activity Recognition from 

Accelerometer Data. Association for the advancement of artificial intelligence, 5, 5. 

Prossegger, M., & Bouchachia, A. (2014). Multi-resident activity recognition using incremental 

decision treesSpringer. Symposium conducted at the meeting of the International 

Conference on Adaptive and Intelligent Systems 

Qin Ni, A. B. G. H., Iván Pau de la Cruz. (2015). The Elderly’s Independent Living in Smart 

Homes:  A Characterization of Activities and Sensing Infrastructure Survey to Facilitate 

Services Development Sensors. 

Rawat, U. Introduction to Hill Climbing | Artificial Intelligence. Geeks for Geeks. 

Reisberg, B., Finkel, S., Overall, J., Schmidt-Gollas, N., Kanowski, S., Lehfeld, H., . . . Heininger, 

K. (2001). The Alzheimer's disease activities of daily living international scale (ADL-IS). 

International Psychogeriatrics, 13(2), 163-181. 

Rodomagoulakis, I., Katsamanis, A., Potamianos, G., Giannoulis, P., Tsiami, A., & Maragos, P. 

(2017). Room-localized spoken command recognition in multi-room, multi-microphone 

environments. Computer Speech & Language, 46, 419-443. 

https://doi.org/10.1016/j.csl.2017.02.004 

Ross Messing, C. P., Henry Kautz (2009). Activity recognition using the velocity histories of 

tracked keypoints. IEEE 12th international conference on computer vision, 7. 

Roy, N., Misra, A., & Cook, D. (2016). Ambient and smartphone sensor assisted ADL recognition 

in multi-inhabitant smart environments. Journal Of Ambient Intelligence And Humanized 

Computing, 7(1), 1-19. https://doi.org/10.1007/s12652-015-0294-7 

https://doi.org/10.1007/s10489-017-0976-2
https://doi.org/10.1007/s10489-017-0976-2
https://explorable.com/significance-test
https://towardsdatascience.com/statistical-tests-when-to-use-which-704557554740
https://doi.org/10.1016/j.csl.2017.02.004
https://doi.org/10.1007/s12652-015-0294-7


92 

 

Ryan, T. H. (1960). Significance tests for multiple comparison of proportions, variances, and other 

statistics. Psychological Bulletin, 57(4), 318-328. https://doi.org/10.1037/h0044320 

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE 

transactions on systems, man, and cybernetics, 21(3), 660-674. 

Sarkar, A., Lee, Y.-K., & Lee, S. (2010). ARHMAM: an activity recognition system based on 

hidden Markov minded activity modelACM. Symposium conducted at the meeting of the 

Proceedings of the 4th International Conference on Uniquitous Information Management 

and Communication 

Sarkar, A. J., & Khan, A. M. (2011). An active process for sensor-based activity data 

collectionIEEE. Symposium conducted at the meeting of the 2011 24th Canadian 

Conference on Electrical and Computer Engineering (CCECE) 

Sikder, F., & Sarkar, D. (2017). Log-Sum Distance Measures and Its Application to Human-

Activity Monitoring and Recognition Using Data From Motion Sensors. IEEE Sensors 

Journal, 17(14), 4520-4533. https://doi.org/10.1109/JSEN.2017.2707921 

Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint 

activities among multiple residents in smart environments. Journal of ambient 

intelligence and humanized computing, 1(1), 57-63. 

T. Guettari, J. B., B E. Benkelfat, G. Chollet, J L. Baldinger,P. Dore, D. Istrate. (2014). Thermal 

signal analysis in smart home environment for detecting a human presence. presented at 

the meeting of the 2014 1st International Conference on Advanced Technologies for 

Signal and Image Processing (ATSIP), Sousse, Tunisia. 

T.L.M. van Kasteren, G. E., B.J.A. Kröse. (2010). Activity recognition using semi-Markov 

models on real world smart home datasets. Journal of ambient intelligence and smart 

environments, 2|3 41. 

Tapia, E. M., Intille, S. S., & Larson, K. (2004). Activity recognition in the home using simple 

and ubiquitous sensorsSpringer. Symposium conducted at the meeting of the International 

conference on pervasive computing 

Trevor Hastie, R. T., Jerome Friedman. (2009). The Elements of Statistical Learning: Springer, 

New York, NY. 

Triboan, D., Chen, L., Chen, F., & Wang, Z. (2017). Semantic segmentation of real-time sensor 

data stream for complex activity recognition. Personal and Ubiquitous Computing, 21(3), 

411-425. 

trifacta. (2019). Data Cleansing for Better Analysis & Business Insight. Retrieved from 

https://www.trifacta.com/data-cleansing/ 

U. A. B. U. A. Bakar, H. G., S. F. Hasanm, S. C. Mukhopadhyay. (2015). Activity and Anomaly 

Detection in Smart Home: A Survey. Next Generation Sensors and Systems, 29. 

Uddin, M. Z. (2017). Human activity recognition using segmented body part and body joint 

features with hidden Markov models. Multimedia Tools and Applications, 76(11 %@ 

1573-7721), 13585-13614. Uddin2017. https://doi.org/10.1007/s11042-016-3742-2 %U 

https://doi.org/10.1007/s11042-016-3742-2 

van Kasteren, T. L., Englebienne, G., & Kröse, B. J. (2011a). Hierarchical activity recognition 

using automatically clustered actionsSpringer. Symposium conducted at the meeting of 

the International Joint Conference on Ambient Intelligence 

van Kasteren, T. L., Englebienne, G., & Kröse, B. J. (2011b). Human activity recognition from 

wireless sensor network data: Benchmark and software. In Activity recognition in 

pervasive intelligent environments (pp. 165-186): Springer. 

https://doi.org/10.1037/h0044320
https://doi.org/10.1109/JSEN.2017.2707921
https://www.trifacta.com/data-cleansing/
https://doi.org/10.1007/s11042-016-3742-2
https://doi.org/10.1007/s11042-016-3742-2


93 

Wang, J., Zhang, X., Gao, Q., Yue, H., & Wang, H. (2017). Device-Free Wireless Localization 

and Activity Recognition: A Deep Learning Approach. IEEE Trans. Vehicular Technology, 

66(7), 6258-6267. https://doi.org/10.1109/TVT.2016.2635161 

Wilson, D. H., & Atkeson, C. (2005). Simultaneous tracking and activity recognition (STAR) 

using many anonymous, binary sensorsSpringer. Symposium conducted at the meeting 

of the International Conference on Pervasive Computing 

WSU CASAS Datasets. (2007). Retrieved from http://casas.wsu.edu/datasets/ 

Xu, L., Yang, W., Cao, Y., & Li, Q. (2017). Human activity recognition based on random 

forestsIEEE. Symposium conducted at the meeting of the 2017 13th International 

Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD) 

Yin, J., Fang, M., Mokhtari, G., & Zhang, Q. (2016a). Multi-resident Location Tracking in Smart 

Home through Non-wearable Unobtrusive Sensors.  Retrieved from 

https://doi.org/10.1007/978-3-319-39601-9_1 https://doi.org/10.1007/978-3-319-39601-

9_1 

Yin, J., Fang, M., Mokhtari, G., & Zhang, Q. (2016b). Multi-resident location tracking in smart 

home through non-wearable unobtrusive sensorsSpringer. Symposium conducted at the 

meeting of the International Conference on Smart Homes and Health Telematics 

Yu, H., & Kim, S. (2012). SVM tutorial—classification, regression and ranking. Handbook of 

Natural computing, 479-506. 

Yuan, G., Wang, Z., Meng, F., Yan, Q., & Xia, S. (2019). An overview of human activity 

recognition based on smartphone. Sensor Review, 39(2), 288-306. 

ZDRAVEVSKI, E., LAMESKI, P., & TRAJKOVIK, V. (2017). Improving Activity Recognition 

Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering. Ieee 

Access, 5, 5262-5280. https://doi.org/10.1109/ACCESS.2017.2684913 

Zhao, C., Wang, J., & Lu, H. (2017). Learning discriminative context models for concurrent 

collective activity recognition. Multimedia Tools and Applications, 76(5 %@ 1573-7721), 

7401-7420. Zhao2017. https://doi.org/10.1007/s11042-016-3393-3 %U 

https://doi.org/10.1007/s11042-016-3393-3 

https://doi.org/10.1109/TVT.2016.2635161
http://casas.wsu.edu/datasets/
https://doi.org/10.1007/978-3-319-39601-9_1
https://doi.org/10.1007/978-3-319-39601-9_1
https://doi.org/10.1007/978-3-319-39601-9_1
https://doi.org/10.1109/ACCESS.2017.2684913
https://doi.org/10.1007/s11042-016-3393-3
https://doi.org/10.1007/s11042-016-3393-3

